--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S1_M1_R1_swint_42509597 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9982922664064406 --- # S1_M1_R1_swint_42509597 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0080 - Accuracy: 0.9983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0214 | 1.0 | 256 | 0.0224 | 0.9907 | | 0.0075 | 2.0 | 512 | 0.0098 | 0.9971 | | 0.0171 | 3.0 | 768 | 0.0243 | 0.9949 | | 0.0007 | 4.0 | 1025 | 0.0063 | 0.9985 | | 0.0001 | 5.0 | 1280 | 0.0080 | 0.9983 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0