daliprf commited on
Commit
1eced3c
·
1 Parent(s): 0376fae
.gitattributes CHANGED
@@ -29,3 +29,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ *.png filter=lfs diff=lfs merge=lfs -text
33
+ *.jpg filter=lfs diff=lfs merge=lfs -text
AffectNetClass.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from config import DatasetName, AffectnetConf, InputDataSize, LearningConfig, ExpressionCodesAffectnet
2
+ from config import LearningConfig, InputDataSize, DatasetName, AffectnetConf, DatasetType
3
+
4
+ import numpy as np
5
+ import os
6
+ import matplotlib.pyplot as plt
7
+ import math
8
+ from datetime import datetime
9
+ from sklearn.utils import shuffle
10
+ from sklearn.model_selection import train_test_split
11
+ from numpy import save, load, asarray, savez_compressed, savez
12
+ import csv
13
+ from skimage.io import imread
14
+ import pickle
15
+ import csv
16
+ from tqdm import tqdm
17
+ from PIL import Image
18
+ from skimage.transform import resize
19
+ import tensorflow as tf
20
+ import random
21
+ import cv2
22
+ from skimage.feature import hog
23
+ from skimage import data, exposure
24
+ from matplotlib.path import Path
25
+ from scipy import ndimage, misc
26
+ from data_helper import DataHelper
27
+ from sklearn.metrics import accuracy_score
28
+ from sklearn.metrics import confusion_matrix
29
+ from dataset_class import CustomDataset
30
+ from sklearn.metrics import precision_recall_fscore_support as score
31
+
32
+
33
+ class AffectNet:
34
+ def __init__(self, ds_type):
35
+ """we set the parameters needed during the whole class:
36
+ """
37
+ self.ds_type = ds_type
38
+ if ds_type == DatasetType.train:
39
+ self.img_path = AffectnetConf.no_aug_train_img_path
40
+ self.anno_path = AffectnetConf.no_aug_train_annotation_path
41
+ self.img_path_aug = AffectnetConf.aug_train_img_path
42
+ self.masked_img_path = AffectnetConf.aug_train_masked_img_path
43
+ self.anno_path_aug = AffectnetConf.aug_train_annotation_path
44
+
45
+ elif ds_type == DatasetType.eval:
46
+ self.img_path_aug = AffectnetConf.eval_img_path
47
+ self.anno_path_aug = AffectnetConf.eval_annotation_path
48
+ self.img_path = AffectnetConf.eval_img_path
49
+ self.anno_path = AffectnetConf.eval_annotation_path
50
+ self.masked_img_path = AffectnetConf.eval_masked_img_path
51
+
52
+ elif ds_type == DatasetType.train_7:
53
+ self.img_path = AffectnetConf.no_aug_train_img_path_7
54
+ self.anno_path = AffectnetConf.no_aug_train_annotation_path_7
55
+ self.img_path_aug = AffectnetConf.aug_train_img_path_7
56
+ self.masked_img_path = AffectnetConf.aug_train_masked_img_path_7
57
+ self.anno_path_aug = AffectnetConf.aug_train_annotation_path_7
58
+
59
+ elif ds_type == DatasetType.eval_7:
60
+ self.img_path_aug = AffectnetConf.eval_img_path_7
61
+ self.anno_path_aug = AffectnetConf.eval_annotation_path_7
62
+ self.img_path = AffectnetConf.eval_img_path_7
63
+ self.anno_path = AffectnetConf.eval_annotation_path_7
64
+ self.masked_img_path = AffectnetConf.eval_masked_img_path_7
65
+
66
+ def test_accuracy(self, model, print_samples=False):
67
+ dhp = DataHelper()
68
+
69
+ batch_size = LearningConfig.batch_size
70
+ exp_pr_glob = []
71
+ exp_gt_glob = []
72
+ acc_per_label = []
73
+ '''create batches'''
74
+ img_filenames, exp_filenames = dhp.create_generator_full_path(
75
+ img_path=self.img_path,
76
+ annotation_path=self.anno_path, label=None)
77
+
78
+ print(len(img_filenames))
79
+ step_per_epoch = int(len(img_filenames) // batch_size)
80
+ exp_pr_lbl = []
81
+ exp_gt_lbl = []
82
+
83
+ cds = CustomDataset()
84
+ ds = cds.create_dataset(img_filenames=img_filenames,
85
+ anno_names=exp_filenames,
86
+ is_validation=True, ds=DatasetName.affectnet)
87
+ batch_index = 0
88
+ for img_batch, exp_gt_b in ds:
89
+ '''predict on batch'''
90
+ exp_gt_b = exp_gt_b[:, -1]
91
+ img_batch = img_batch[:, -1, :, :]
92
+
93
+ # probab_exp_pr_b, _ = model.predict_on_batch([img_batch]) # with embedding
94
+ pr_data = model.predict_on_batch([img_batch])
95
+ probab_exp_pr_b = pr_data[0]
96
+
97
+ scores_b = np.array([tf.nn.softmax(probab_exp_pr_b[i]) for i in range(len(probab_exp_pr_b))])
98
+ exp_pr_b = np.array([np.argmax(scores_b[i]) for i in range(len(probab_exp_pr_b))])
99
+
100
+ if print_samples:
101
+ for i in range(len(exp_pr_b)):
102
+ dhp.test_image_print_exp(str(i) + str(batch_index + 1), np.array(img_batch[i]),
103
+ np.int8(exp_gt_b[i]), np.int8(exp_pr_b[i]))
104
+
105
+ exp_pr_lbl += np.array(exp_pr_b).tolist()
106
+ exp_gt_lbl += np.array(exp_gt_b).tolist()
107
+ batch_index += 1
108
+ exp_pr_lbl = np.int64(np.array(exp_pr_lbl))
109
+ exp_gt_lbl = np.int64(np.array(exp_gt_lbl))
110
+
111
+ global_accuracy = accuracy_score(exp_gt_lbl, exp_pr_lbl)
112
+
113
+ precision, recall, fscore, support = score(exp_gt_lbl, exp_pr_lbl)
114
+
115
+ conf_mat = confusion_matrix(exp_gt_lbl, exp_pr_lbl) / 500.0
116
+ # conf_mat = tf.math.confusion_matrix(exp_gt_lbl, exp_pr_lbl, num_classes=7)/500.0
117
+ avg_acc = np.mean([conf_mat[i, i] for i in range(7)])
118
+
119
+ ds = None
120
+ face_img_filenames = None
121
+ eyes_img_filenames = None
122
+ nose_img_filenames = None
123
+ mouth_img_filenames = None
124
+ exp_filenames = None
125
+ global_bunch = None
126
+ upper_bunch = None
127
+ middle_bunch = None
128
+ bottom_bunch = None
129
+
130
+ return global_accuracy, conf_mat, avg_acc, precision, recall, fscore, support
FerPlusClass.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from config import DatasetName, AffectnetConf, InputDataSize, LearningConfig, ExpressionCodesAffectnet
2
+ from config import LearningConfig, InputDataSize, DatasetName, FerPlusConf, DatasetType
3
+
4
+ import numpy as np
5
+ import os
6
+ import matplotlib.pyplot as plt
7
+ import math
8
+ from datetime import datetime
9
+ from sklearn.utils import shuffle
10
+ from sklearn.model_selection import train_test_split
11
+ from numpy import save, load, asarray, savez_compressed
12
+ import csv
13
+ from skimage.io import imread
14
+ import pickle
15
+ import csv
16
+ from tqdm import tqdm
17
+ from PIL import Image
18
+ from skimage.transform import resize
19
+ import tensorflow as tf
20
+ import random
21
+ import cv2
22
+ from skimage.feature import hog
23
+ from skimage import data, exposure
24
+ from matplotlib.path import Path
25
+ from scipy import ndimage, misc
26
+ from data_helper import DataHelper
27
+ from sklearn.metrics import accuracy_score
28
+ from sklearn.metrics import confusion_matrix
29
+ from shutil import copyfile
30
+ from dataset_class import CustomDataset
31
+ from sklearn.metrics import precision_recall_fscore_support as score
32
+
33
+
34
+ class FerPlus:
35
+
36
+ def __init__(self, ds_type):
37
+ """we set the parameters needed during the whole class:
38
+ """
39
+ self.ds_type = ds_type
40
+ if ds_type == DatasetType.train:
41
+ self.img_path = FerPlusConf.no_aug_train_img_path
42
+ self.anno_path = FerPlusConf.no_aug_train_annotation_path
43
+ self.img_path_aug = FerPlusConf.aug_train_img_path
44
+ self.anno_path_aug = FerPlusConf.aug_train_annotation_path
45
+ self.masked_img_path = FerPlusConf.aug_train_masked_img_path
46
+ self.orig_image_path = FerPlusConf.orig_image_path_train
47
+
48
+ elif ds_type == DatasetType.test:
49
+ self.img_path = FerPlusConf.test_img_path
50
+ self.anno_path = FerPlusConf.test_annotation_path
51
+ self.img_path_aug = FerPlusConf.test_img_path
52
+ self.anno_path_aug = FerPlusConf.test_annotation_path
53
+ self.masked_img_path = FerPlusConf.test_masked_img_path
54
+ self.orig_image_path = FerPlusConf.orig_image_path_train
55
+
56
+ def create_from_orig(self):
57
+ print('create_from_orig & relabel to affectNetLike--->')
58
+ """
59
+ labels are from 1-7, but we save them from 0 to 6
60
+ :param ds_type:
61
+ :return:
62
+ """
63
+
64
+ '''read the text file, and save exp, and image'''
65
+ dhl = DataHelper()
66
+
67
+ exp_affectnet_like_lbls = [6, 5, 4, 1, 0, 2, 3]
68
+ lbl_affectnet_like_lbls = ['angry/', 'disgust/', 'fear/', 'happy/', 'neutral/', 'sad/', 'surprise/']
69
+
70
+ for exp_index in range(len(lbl_affectnet_like_lbls)):
71
+ exp_prefix = lbl_affectnet_like_lbls[exp_index]
72
+ for i, file in tqdm(enumerate(os.listdir(self.orig_image_path + exp_prefix))):
73
+ if file.endswith(".jpg") or file.endswith(".png"):
74
+ img_source_address = self.orig_image_path + exp_prefix + file
75
+ img_dest_address = self.img_path + file
76
+ exp_dest_address = self.anno_path + file[:-4]
77
+ exp = exp_affectnet_like_lbls[exp_index]
78
+
79
+ img = np.array(Image.open(img_source_address))
80
+ res_img = resize(img, (InputDataSize.image_input_size, InputDataSize.image_input_size, 3),
81
+ anti_aliasing=True)
82
+
83
+ im = Image.fromarray(np.round(res_img * 255.0).astype(np.uint8))
84
+ '''save image'''
85
+ im.save(img_dest_address)
86
+ '''save annotation'''
87
+ np.save(exp_dest_address + '_exp', exp)
88
+
89
+ def test_accuracy(self, model, print_samples=False):
90
+ print('FER: test_accuracy')
91
+ dhp = DataHelper()
92
+ '''create batches'''
93
+ img_filenames, exp_filenames = dhp.create_generator_full_path(
94
+ img_path=self.img_path,
95
+ annotation_path=self.anno_path, label=None)
96
+ print(len(img_filenames))
97
+ exp_pr_lbl = []
98
+ exp_gt_lbl = []
99
+
100
+ cds = CustomDataset()
101
+ ds = cds.create_dataset(img_filenames=img_filenames,
102
+ anno_names=exp_filenames,
103
+ is_validation=True,
104
+ ds=DatasetName.fer2013)
105
+
106
+ batch_index = 0
107
+ print('FER: loading test ds')
108
+ for img_batch, exp_gt_b in tqdm(ds):
109
+ '''predict on batch'''
110
+ exp_gt_b = exp_gt_b[:, -1]
111
+ img_batch = img_batch[:, -1, :, :]
112
+
113
+ pr_data = model.predict_on_batch([img_batch])
114
+ probab_exp_pr_b = pr_data[0]
115
+
116
+ scores_b = np.array([tf.nn.softmax(probab_exp_pr_b[i]) for i in range(len(probab_exp_pr_b))])
117
+ exp_pr_b = np.array([np.argmax(scores_b[i]) for i in range(len(probab_exp_pr_b))])
118
+
119
+ if print_samples:
120
+ for i in range(len(exp_pr_b)):
121
+ dhp.test_image_print_exp(str(i)+str(batch_index+1), np.array(img_batch[i]),
122
+ np.int8(exp_gt_b[i]), np.int8(exp_pr_b[i]))
123
+
124
+ exp_pr_lbl += np.array(exp_pr_b).tolist()
125
+ exp_gt_lbl += np.array(exp_gt_b).tolist()
126
+ batch_index += 1
127
+ exp_pr_lbl = np.float64(np.array(exp_pr_lbl))
128
+ exp_gt_lbl = np.float64(np.array(exp_gt_lbl))
129
+
130
+ global_accuracy = accuracy_score(exp_gt_lbl, exp_pr_lbl)
131
+ precision, recall, fscore, support = score(exp_gt_lbl, exp_pr_lbl)
132
+ conf_mat = confusion_matrix(exp_gt_lbl, exp_pr_lbl, normalize='true')
133
+ # conf_mat = tf.math.confusion_matrix(exp_gt_lbl, exp_pr_lbl, num_classes=7)
134
+ avg_acc = np.mean([conf_mat[i,i] for i in range(7)])
135
+
136
+ ds = None
137
+ face_img_filenames = None
138
+ eyes_img_filenames = None
139
+ nose_img_filenames = None
140
+ mouth_img_filenames = None
141
+ exp_filenames = None
142
+
143
+ return global_accuracy, conf_mat, avg_acc, precision, recall, fscore, support
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Ali Pourramezan Fard
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,3 +1,97 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ad-Corre
2
+ Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild
3
+
4
+
5
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ad-corre-adaptive-correlation-based-loss-for/facial-expression-recognition-on-raf-db)](https://paperswithcode.com/sota/facial-expression-recognition-on-raf-db?p=ad-corre-adaptive-correlation-based-loss-for)
6
+ <!--
7
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ad-corre-adaptive-correlation-based-loss-for/facial-expression-recognition-on-affectnet)](https://paperswithcode.com/sota/facial-expression-recognition-on-affectnet?p=ad-corre-adaptive-correlation-based-loss-for)
8
+
9
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ad-corre-adaptive-correlation-based-loss-for/facial-expression-recognition-on-fer2013)](https://paperswithcode.com/sota/facial-expression-recognition-on-fer2013?p=ad-corre-adaptive-correlation-based-loss-for)
10
+ -->
11
+
12
+ #### Link to the paper (open access):
13
+ https://ieeexplore.ieee.org/document/9727163
14
+
15
+ #### Link to the paperswithcode.com:
16
+ https://paperswithcode.com/paper/ad-corre-adaptive-correlation-based-loss-for
17
+
18
+ ```
19
+ Please cite this work as:
20
+
21
+ @ARTICLE{9727163,
22
+ author={Fard, Ali Pourramezan and Mahoor, Mohammad H.},
23
+ journal={IEEE Access},
24
+ title={Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild},
25
+ year={2022},
26
+ volume={},
27
+ number={},
28
+ pages={1-1},
29
+ doi={10.1109/ACCESS.2022.3156598}}
30
+
31
+ ```
32
+
33
+ ## Introduction
34
+
35
+ Automated Facial Expression Recognition (FER) in the wild using deep neural networks is still challenging due to intra-class variations and inter-class similarities in facial images. Deep Metric Learning (DML) is among the widely used methods to deal with these issues by improving the discriminative power of the learned embedded features. This paper proposes an Adaptive Correlation (Ad-Corre) Loss to guide the network towards generating embedded feature vectors with high correlation for within-class samples and less correlation for between-class samples. Ad-Corre consists of 3 components called Feature Discriminator, Mean Discriminator, and Embedding Discriminator. We design the Feature Discriminator component to guide the network to create the embedded feature vectors to be highly correlated if they belong to a similar class, and less correlated if they belong to different classes. In addition, the Mean Discriminator component leads the network to make the mean embedded feature vectors of different classes to be less similar to each other.We use Xception network as the backbone of our model, and contrary to previous work, we propose an embedding feature space that contains k feature vectors. Then, the Embedding Discriminator component penalizes the network to generate the embedded feature vectors, which are dissimilar.We trained our model using the combination of our proposed loss functions called Ad-Corre Loss jointly with the cross-entropy loss. We achieved a very promising recognition accuracy on AffectNet, RAF-DB, and FER-2013. Our extensive experiments and ablation study indicate the power of our method to cope well with challenging FER tasks in the wild.
36
+
37
+
38
+ ## Evaluation and Samples
39
+ The following samples are taken from the paper:
40
+
41
+ ![Samples](https://github.com/aliprf/Ad-Corre/blob/main/paper_graphical_items/samples.jpg?raw=true)
42
+
43
+
44
+ ----------------------------------------------------------------------------------------------------------------------------------
45
+ ## Installing the requirements
46
+ In order to run the code you need to install python >= 3.5.
47
+ The requirements and the libraries needed to run the code can be installed using the following command:
48
+
49
+ ```
50
+ pip install -r requirements.txt
51
+ ```
52
+
53
+
54
+ ## Using the pre-trained models
55
+ The pretrained models for Affectnet, RafDB, and Fer2013 are provided in the [Trained_Models](https://github.com/aliprf/Ad-Corre/tree/main/Trained_Models) folder. You can use the following code to predict the facial emotionn of a facial image:
56
+
57
+ ```
58
+ tester = TestModels(h5_address='./trained_models/AffectNet_6336.h5')
59
+ tester.recognize_fer(img_path='./img.jpg')
60
+
61
+ ```
62
+ plaese see the following [main.py](https://github.com/aliprf/Ad-Corre/tree/main/main.py) file.
63
+
64
+
65
+ ## Training Network from scratch
66
+ The information and the code to train the model is provided in train.py .Plaese see the following [main.py](https://github.com/aliprf/Ad-Corre/tree/main/main.py) file:
67
+
68
+ ```
69
+ '''training part'''
70
+ trainer = TrainModel(dataset_name=DatasetName.affectnet, ds_type=DatasetType.train_7)
71
+ trainer.train(arch="xcp", weight_path="./")
72
+
73
+ ```
74
+
75
+
76
+ ### Preparing Data
77
+ Data needs to be normalized and saved in npy format.
78
+
79
+ ---------------------------------------------------------------
80
+
81
+ ```
82
+ Please cite this work as:
83
+
84
+ @ARTICLE{9727163,
85
+ author={Fard, Ali Pourramezan and Mahoor, Mohammad H.},
86
+ journal={IEEE Access},
87
+ title={Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild},
88
+ year={2022},
89
+ volume={},
90
+ number={},
91
+ pages={1-1},
92
+ doi={10.1109/ACCESS.2022.3156598}}
93
+
94
+ ```
95
+
96
+
97
+
RafdbClass.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from config import DatasetName, AffectnetConf, InputDataSize, LearningConfig, ExpressionCodesAffectnet
2
+ from config import LearningConfig, InputDataSize, DatasetName, RafDBConf, DatasetType
3
+ from sklearn.metrics import precision_recall_fscore_support as score
4
+
5
+ import numpy as np
6
+ import os
7
+ import matplotlib.pyplot as plt
8
+ import math
9
+ from datetime import datetime
10
+ from sklearn.utils import shuffle
11
+ from sklearn.model_selection import train_test_split
12
+ from numpy import save, load, asarray, savez_compressed
13
+ import csv
14
+ from skimage.io import imread
15
+ import pickle
16
+ import csv
17
+ from tqdm import tqdm
18
+ from PIL import Image
19
+ from skimage.transform import resize
20
+ import tensorflow as tf
21
+ import random
22
+ import cv2
23
+ from skimage.feature import hog
24
+ from skimage import data, exposure
25
+ from matplotlib.path import Path
26
+ from scipy import ndimage, misc
27
+ from data_helper import DataHelper
28
+ from sklearn.metrics import accuracy_score
29
+ from sklearn.metrics import confusion_matrix
30
+ from shutil import copyfile
31
+ from dataset_class import CustomDataset
32
+
33
+
34
+ class RafDB:
35
+ def __init__(self, ds_type):
36
+ """we set the parameters needed during the whole class:
37
+ """
38
+ self.ds_type = ds_type
39
+ if ds_type == DatasetType.train:
40
+ self.img_path = RafDBConf.no_aug_train_img_path
41
+ self.anno_path = RafDBConf.no_aug_train_annotation_path
42
+ self.img_path_aug = RafDBConf.aug_train_img_path
43
+ self.anno_path_aug = RafDBConf.aug_train_annotation_path
44
+ self.masked_img_path = RafDBConf.aug_train_masked_img_path
45
+
46
+ elif ds_type == DatasetType.test:
47
+ self.img_path = RafDBConf.test_img_path
48
+ self.anno_path = RafDBConf.test_annotation_path
49
+ self.img_path_aug = RafDBConf.test_img_path
50
+ self.anno_path_aug = RafDBConf.test_annotation_path
51
+ self.masked_img_path = RafDBConf.test_masked_img_path
52
+
53
+ def test_accuracy(self, model, print_samples=False):
54
+ dhp = DataHelper()
55
+ batch_size = LearningConfig.batch_size
56
+ # exp_pr_glob = []
57
+ # exp_gt_glob = []
58
+ # acc_per_label = []
59
+ '''create batches'''
60
+ img_filenames, exp_filenames = dhp.create_generator_full_path(
61
+ img_path=self.img_path,
62
+ annotation_path=self.anno_path, label=None)
63
+ print(len(img_filenames))
64
+ step_per_epoch = int(len(img_filenames) // batch_size)
65
+ exp_pr_lbl = []
66
+ exp_gt_lbl = []
67
+
68
+ cds = CustomDataset()
69
+ ds = cds.create_dataset(img_filenames=img_filenames,
70
+ anno_names=exp_filenames,
71
+ is_validation=True,
72
+ ds=DatasetName.rafdb)
73
+
74
+ batch_index = 0
75
+ for img_batch, exp_gt_b in tqdm(ds):
76
+ '''predict on batch'''
77
+ exp_gt_b = exp_gt_b[:, -1]
78
+ img_batch = img_batch[:, -1, :, :]
79
+
80
+ pr_data = model.predict_on_batch([img_batch])
81
+
82
+ probab_exp_pr_b = pr_data[0]
83
+ exp_pr_b = np.array([np.argmax(probab_exp_pr_b[i]) for i in range(len(probab_exp_pr_b))])
84
+
85
+ if print_samples:
86
+ for i in range(len(exp_pr_b)):
87
+ dhp.test_image_print_exp(str(i) + str(batch_index + 1), np.array(img_batch[i]),
88
+ np.int8(exp_gt_b[i]), np.int8(exp_pr_b[i]))
89
+
90
+ exp_pr_lbl += np.array(exp_pr_b).tolist()
91
+ exp_gt_lbl += np.array(exp_gt_b).tolist()
92
+ batch_index += 1
93
+ exp_pr_lbl = np.float64(np.array(exp_pr_lbl))
94
+ exp_gt_lbl = np.float64(np.array(exp_gt_lbl))
95
+
96
+ global_accuracy = accuracy_score(exp_gt_lbl, exp_pr_lbl)
97
+ precision, recall, fscore, support = score(exp_gt_lbl, exp_pr_lbl)
98
+
99
+ conf_mat = confusion_matrix(exp_gt_lbl, exp_pr_lbl, normalize='true')
100
+ avg_acc = np.mean([conf_mat[i, i] for i in range(7)])
101
+
102
+ ds = None
103
+ face_img_filenames = None
104
+ eyes_img_filenames = None
105
+ nose_img_filenames = None
106
+ mouth_img_filenames = None
107
+ exp_filenames = None
108
+
109
+ return global_accuracy, conf_mat, avg_acc, precision, recall, fscore, support
cnn_model.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from config import DatasetName, AffectnetConf, InputDataSize, LearningConfig
2
+ # from hg_Class import HourglassNet
3
+
4
+ import tensorflow as tf
5
+ # from tensorflow import keras
6
+ # from skimage.transform import resize
7
+ from keras.models import Model
8
+
9
+ from keras.applications import mobilenet_v2, mobilenet, resnet50, densenet, resnet
10
+ from keras.layers import Dense, MaxPooling2D, Conv2D, Flatten, \
11
+ BatchNormalization, Activation, GlobalAveragePooling2D, DepthwiseConv2D, \
12
+ Dropout, ReLU, Concatenate, Input, GlobalMaxPool2D, LeakyReLU, Softmax, ELU
13
+
14
+ class CNNModel:
15
+ def get_model(self, arch, num_of_classes, weights):
16
+ if arch == 'resnet':
17
+ model = self._create_resnetemb(num_of_classes,
18
+ num_of_embeddings=LearningConfig.num_embeddings,
19
+ input_shape=(InputDataSize.image_input_size,
20
+ InputDataSize.image_input_size, 3),
21
+ weights=weights
22
+ )
23
+ if arch == 'xcp':
24
+ model = self._create_Xception_l2(num_of_classes,
25
+ num_of_embeddings=LearningConfig.num_embeddings,
26
+ input_shape=(InputDataSize.image_input_size,
27
+ InputDataSize.image_input_size, 3),
28
+ weights=weights
29
+ )
30
+
31
+ return model
32
+
33
+ def _create_resnetemb(self, num_of_classes, input_shape, weights, num_of_embeddings):
34
+ resnet_model = resnet.ResNet50(
35
+ input_shape=input_shape,
36
+ include_top=True,
37
+ weights='imagenet',
38
+ # weights=None,
39
+ input_tensor=None,
40
+ pooling=None)
41
+ resnet_model.layers.pop()
42
+
43
+ avg_pool = resnet_model.get_layer('avg_pool').output # 2048
44
+ ''''''
45
+ embeddings = []
46
+ for i in range(num_of_embeddings):
47
+ emb = tf.keras.layers.Dense(LearningConfig.embedding_size, activation=None)(avg_pool)
48
+ emb_l2 = tf.keras.layers.Lambda(lambda x: tf.math.l2_normalize(x, axis=1))(emb)
49
+ embeddings.append(emb_l2)
50
+
51
+ if num_of_embeddings > 1:
52
+ fused = tf.keras.layers.Concatenate(axis=1)([embeddings[i] for i in range(num_of_embeddings)])
53
+ else:
54
+ fused = embeddings[0]
55
+
56
+ fused = Dropout(rate=0.5)(fused)
57
+
58
+ '''out'''
59
+ out_categorical = Dense(num_of_classes,
60
+ activation='softmax',
61
+ name='out')(fused)
62
+
63
+ inp = [resnet_model.input]
64
+
65
+ revised_model = Model(inp, [out_categorical] + [embeddings[i] for i in range(num_of_embeddings)])
66
+ revised_model.summary()
67
+ '''save json'''
68
+ model_json = revised_model.to_json()
69
+
70
+ with open("./model_archs/resnetemb.json", "w") as json_file:
71
+ json_file.write(model_json)
72
+
73
+ return revised_model
74
+
75
+ def _create_Xception_l2(self, num_of_classes, num_of_embeddings, input_shape, weights):
76
+ xception_model = tf.keras.applications.Xception(
77
+ include_top=False,
78
+ # weights=None,
79
+ input_tensor=None,
80
+ weights='imagenet',
81
+ input_shape=input_shape,
82
+ pooling=None,
83
+ classes=num_of_classes
84
+ )
85
+
86
+ act_14 = xception_model.get_layer('block14_sepconv2_act').output
87
+ avg_pool = GlobalAveragePooling2D()(act_14)
88
+
89
+ embeddings = []
90
+ for i in range(num_of_embeddings):
91
+ emb = tf.keras.layers.Dense(LearningConfig.embedding_size, activation=None)(avg_pool)
92
+ emb_l2 = tf.keras.layers.Lambda(lambda x: tf.math.l2_normalize(x, axis=1))(emb)
93
+
94
+ embeddings.append(emb_l2)
95
+ if num_of_embeddings > 1:
96
+ fused = tf.keras.layers.Concatenate(axis=1)([embeddings[i] for i in range(num_of_embeddings)])
97
+ else:
98
+ fused = embeddings[0]
99
+ fused = Dropout(rate=0.5)(fused)
100
+
101
+ '''out'''
102
+ out_categorical = Dense(num_of_classes,
103
+ activation='softmax',
104
+ name='out')(fused)
105
+
106
+ inp = [xception_model.input]
107
+
108
+ revised_model = Model(inp, [out_categorical] + [embeddings[i] for i in range(num_of_embeddings)])
109
+ revised_model.summary()
110
+ '''save json'''
111
+ model_json = revised_model.to_json()
112
+
113
+ with open("./model_archs/xcp_embedding.json", "w") as json_file:
114
+ json_file.write(model_json)
115
+
116
+ return revised_model
config.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class DatasetName:
2
+ affectnet = 'affectnet'
3
+ rafdb = 'rafdb'
4
+ fer2013 = 'fer2013'
5
+
6
+
7
+ class ExpressionCodesRafdb:
8
+ Surprise = 1
9
+ Fear = 2
10
+ Disgust = 3
11
+ Happiness = 4
12
+ Sadness = 5
13
+ Anger = 6
14
+ Neutral = 7
15
+
16
+ class ExpressionCodesAffectnet:
17
+ neutral = 0
18
+ happy = 1
19
+ sad = 2
20
+ surprise = 3
21
+ fear = 4
22
+ disgust = 5
23
+ anger = 6
24
+ contempt = 7
25
+ none = 8
26
+ uncertain = 9
27
+ noface = 10
28
+
29
+ class DatasetType:
30
+ train = 0
31
+ train_7 = 1
32
+ eval = 2
33
+ eval_7 = 3
34
+ test = 4
35
+
36
+
37
+ class LearningConfig:
38
+ # batch_size = 100
39
+ batch_size = 50
40
+ # batch_size = 1
41
+ # batch_size = 5
42
+ virtual_batch_size = 5* batch_size
43
+ epochs = 300
44
+ embedding_size = 256 # we have 360 filters at the end
45
+ # embedding_size = 128 # we have 360 filters at the end
46
+ labels_history_frame = 1000
47
+ num_classes = 7
48
+ # num_embeddings = 7
49
+ num_embeddings = 10
50
+
51
+
52
+ class InputDataSize:
53
+ image_input_size = 224
54
+
55
+
56
+ class FerPlusConf:
57
+ _prefix_path = './FER_plus' # --> zeue
58
+
59
+ orig_image_path_train = _prefix_path + '/orig/train/'
60
+ orig_image_path_test = _prefix_path + '/orig/test/'
61
+
62
+ '''only 7 labels'''
63
+ no_aug_train_img_path = _prefix_path + '/train_set/images/'
64
+ no_aug_train_annotation_path = _prefix_path + '/train_set/annotations/'
65
+
66
+ aug_train_img_path = _prefix_path + '/train_set_aug/images/'
67
+ aug_train_annotation_path = _prefix_path + '/train_set_aug/annotations/'
68
+ aug_train_masked_img_path = _prefix_path + '/train_set_aug/masked_images/'
69
+
70
+ weight_save_path = _prefix_path + '/weight_saving_path/'
71
+
72
+ '''both public&private test:'''
73
+ test_img_path = _prefix_path + '/test_set/images/'
74
+ test_annotation_path = _prefix_path + '/test_set/annotations/'
75
+ test_masked_img_path = _prefix_path + '/test_set/masked_images/'
76
+
77
+ '''private test:'''
78
+ private_test_img_path = _prefix_path + '/private_test_set/images/'
79
+ private_test_annotation_path = _prefix_path + '/private_test_set/annotations/'
80
+ '''public test-> Eval'''
81
+ public_test_img_path = _prefix_path + '/public_test_set/images/'
82
+ public_test_annotation_path = _prefix_path + '/public_test_set/annotations/'
83
+
84
+
85
+ class RafDBConf:
86
+ _prefix_path = './RAF-DB' #
87
+
88
+ orig_annotation_txt_path = _prefix_path + '/list_patition_label.txt'
89
+ orig_image_path = _prefix_path + '/original/'
90
+ orig_bounding_box = _prefix_path + '/boundingbox/'
91
+
92
+ '''only 7 labels'''
93
+ no_aug_train_img_path = _prefix_path + '/train_set/images/'
94
+ no_aug_train_annotation_path = _prefix_path + '/train_set/annotations/'
95
+
96
+ aug_train_img_path = _prefix_path + '/train_set_aug/images/'
97
+ aug_train_annotation_path = _prefix_path + '/train_set_aug/annotations/'
98
+ aug_train_masked_img_path = _prefix_path + '/train_set_aug/masked_images/'
99
+
100
+ test_img_path = _prefix_path + '/test_set/images/'
101
+ test_annotation_path = _prefix_path + '/test_set/annotations/'
102
+ test_masked_img_path = _prefix_path + '/test_set/masked_images/'
103
+
104
+ augmentation_factor = 5
105
+
106
+ weight_save_path = _prefix_path + '/weight_saving_path/'
107
+
108
+
109
+ class AffectnetConf:
110
+ """"""
111
+ '''atlas'''
112
+ _prefix_path = './affectnet' # --> Aq
113
+
114
+ orig_csv_train_path = _prefix_path + '/orig/training.csv'
115
+ orig_csv_evaluate_path = _prefix_path + '/orig/validation.csv'
116
+
117
+ '''8 labels'''
118
+ no_aug_train_img_path = _prefix_path + '/train_set/images/'
119
+ no_aug_train_annotation_path = _prefix_path + '/train_set/annotations/'
120
+
121
+ aug_train_img_path = _prefix_path + '/train_set_aug/images/'
122
+ aug_train_annotation_path = _prefix_path + '/train_set_aug/annotations/'
123
+ aug_train_masked_img_path = _prefix_path + '/train_set_aug/masked_images/'
124
+
125
+ eval_img_path = _prefix_path + '/eval_set/images/'
126
+ eval_annotation_path = _prefix_path + '/eval_set/annotations/'
127
+ eval_masked_img_path = _prefix_path + '/eval_set/masked_images/'
128
+
129
+ '''7 labels'''
130
+ no_aug_train_img_path_7 = _prefix_path + '/train_set_7/images/'
131
+ no_aug_train_annotation_path_7 = _prefix_path + '/train_set_7/annotations/'
132
+
133
+ aug_train_img_path_7 = _prefix_path + '/train_set_7_aug/images/'
134
+ aug_train_annotation_path_7 = _prefix_path + '/train_set_7_aug/annotations/'
135
+ aug_train_masked_img_path_7 = _prefix_path + '/train_set_7_aug/masked_images/'
136
+
137
+ eval_img_path_7 = _prefix_path + '/eval_set_7/images/'
138
+ eval_annotation_path_7 = _prefix_path + '/eval_set_7/annotations/'
139
+ eval_masked_img_path_7 = _prefix_path + '/eval_set_7/masked_images/'
140
+
141
+ weight_save_path = _prefix_path + '/weight_saving_path/'
142
+
143
+ num_of_samples_train = 2420940
144
+ num_of_samples_train_7 = 0
145
+ num_of_samples_eval = 3999
custom_loss.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import numpy as np
3
+ from config import DatasetName, ExpressionCodesRafdb, ExpressionCodesAffectnet
4
+ from keras import backend as K
5
+ from sklearn.metrics import confusion_matrix
6
+ import time
7
+ from config import LearningConfig
8
+
9
+
10
+ class CustomLosses:
11
+
12
+ def embedding_loss_distance(self, embeddings):
13
+
14
+ """
15
+ for each item in batch: calculate the correlation between all the embeddings
16
+ :param embeddings:
17
+ :return:
18
+ """
19
+ '''correlation'''
20
+ emb_len = len(embeddings)
21
+ ''' emb_num, bs, emb_size: '''
22
+ embeddings = tf.cast(embeddings, dtype=tf.dtypes.float32)
23
+ loss = tf.cast([np.corrcoef(embeddings[:, i, :]) for i in range(LearningConfig.batch_size)],
24
+ dtype=tf.dtypes.float32)
25
+ embedding_similarity_loss = tf.reduce_mean((1 - tf.eye(emb_len)) * # ignore the affect of the diagonal
26
+ (1 + np.array(loss))) # the loss -> more correlation, the better
27
+ return embedding_similarity_loss
28
+
29
+ def mean_embedding_loss_distance(self, embeddings, exp_gt_vec, exp_pr_vec, num_of_classes):
30
+ """
31
+ calculate the mean distribution for each class, and force the mean_embedding to be the same
32
+ :param embedding: bs * embedding_size
33
+ :param exp_gt_vec: bs
34
+ :param exp_pr_vec: bs * num_of_classes
35
+ :param num_of_classes:
36
+ :return:
37
+ """
38
+ # bs_size = tf.shape(exp_pr_vec, out_type=tf.dtypes.int64)[0]
39
+ # 7 * bs: for each class - which we have 7 class, not the embeddings -, is the sample belongs to it we put 1
40
+ # else we put 0 . THE SAME FOR ALL embeddings
41
+ c_map = np.array([tf.cast(tf.where(exp_gt_vec == i, 1.0, K.epsilon()), dtype=tf.dtypes.float32)
42
+ for i in range(num_of_classes)]) # 7 * bs
43
+
44
+ # calculate class-related mean embedding: num_of_classes * embedding_size
45
+ # 7 embedding, and 7 classes and each class has an embedding mean of 256 -> 7,7,256
46
+ mean_embeddings = np.array([[np.average(embeddings[k], axis=0, weights=c_map[i, :])
47
+ for i in range(num_of_classes)]
48
+ for k in range(len(embeddings))]) # 7:embedding,7:class, 256:size
49
+
50
+ # the correlation between each mean_embedding should be low:
51
+ mean_emb_correlation_loss = tf.reduce_mean([(1 - tf.eye(num_of_classes)) * # zero the diagonal
52
+ (1 + tf.cast(np.corrcoef(mean_embeddings[k, :, :]),
53
+ dtype=tf.dtypes.float32))
54
+ for k in range(len(embeddings))])
55
+
56
+ # the correlation between each mean_embedding should be low:
57
+ return mean_emb_correlation_loss
58
+
59
+ def mean_embedding_loss(self, embedding, exp_gt_vec, exp_pr_vec, num_of_classes):
60
+ """
61
+ calculate the mean distribution for each class, and force the mean_embedding to be the same
62
+ :param embedding: bs * embedding_size
63
+ :param exp_gt_vec: bs
64
+ :param exp_pr_vec: bs * num_of_classes
65
+ :param num_of_classes:
66
+ :return:
67
+ """
68
+ kl = tf.keras.losses.KLDivergence()
69
+ bs_size = tf.shape(exp_pr_vec, out_type=tf.dtypes.int64)[0]
70
+ # calculate class maps: num_of_classes * bs
71
+ c_map = np.array([tf.cast(tf.where(exp_gt_vec == i, 1, 0), dtype=tf.dtypes.int8)
72
+ for i in range(num_of_classes)]) # 7 * bs
73
+ # calculate class-related mean embedding: num_of_classes * embedding_size
74
+ mean_embeddings = np.array([np.average(embedding, axis=0, weights=c_map[i, :])
75
+ if np.sum(c_map[i, :]) > 0 else np.zeros(LearningConfig.embedding_size)
76
+ for i in range(num_of_classes)]) + \
77
+ K.epsilon() # added as a bias to get ride of zeros
78
+
79
+ # calculate loss:
80
+ # 1 -> the correlation between each mean_embedding should be low:
81
+ mean_emb_correlation_loss = tf.reduce_mean((1 - tf.eye(num_of_classes)) *
82
+ (1 + tf.cast(np.corrcoef(mean_embeddings), dtype=tf.dtypes.float32)))
83
+ # 2 -> the KL-divergence between the mean distribution of each class and the related
84
+ # embeddings should be low. Accordingly, we lead the network towards learning the mean distribution
85
+ mean_emb_batch = tf.cast([np.array(mean_embeddings)[i] for i in np.argmax(c_map.T, axis=1)],
86
+ dtype=tf.dtypes.float32)
87
+ emb_kl_loss = kl(y_true=mean_emb_batch, y_pred=embedding)
88
+
89
+ return mean_emb_correlation_loss, emb_kl_loss
90
+
91
+ def variance_embedding_loss(self, embedding, exp_gt_vec, exp_pr_vec, num_of_classes):
92
+ """
93
+ calculate the variance of the distribution for each class, and force the mean_embedding to be the same
94
+ :param embedding:
95
+ :param exp_gt_vec:
96
+ :param exp_pr_vec:
97
+ :param num_of_classes:
98
+ :return:
99
+ """
100
+ kl = tf.keras.losses.KLDivergence()
101
+ bs_size = tf.shape(exp_pr_vec, out_type=tf.dtypes.int64)[0]
102
+ #
103
+ c_map = np.array([tf.cast(tf.where(exp_gt_vec == i, 1, 0), dtype=tf.dtypes.int8)
104
+ for i in range(num_of_classes)]) # 7 * bs
105
+ # calculate class-related var embedding: num_of_classes * embedding_size
106
+ var_embeddings = np.array([tf.math.reduce_std(tf.math.multiply(embedding,
107
+ tf.repeat(tf.expand_dims(
108
+ tf.cast(c_map[i, :],
109
+ dtype=tf.dtypes.float32), -1),
110
+ LearningConfig.embedding_size, axis=-1, )),
111
+ axis=0)
112
+ for i in range(num_of_classes)]) \
113
+ + K.epsilon() # added as a bias to get ride of zeros
114
+
115
+ # calculate loss:
116
+ # 1 -> the correlation between each mean_embedding should be low:
117
+ var_emb_correlation_loss = tf.reduce_mean((1.0 - tf.eye(num_of_classes)) *
118
+ (1.0 + tf.cast(np.cov(var_embeddings), dtype=tf.dtypes.float32)))
119
+ # embeddings should be low. Accordingly, we lead the network towards learning the mean distribution
120
+ var_emb_batch = tf.cast([np.array(var_embeddings)[i] for i in np.argmax(c_map.T, axis=1)],
121
+ dtype=tf.dtypes.float32)
122
+ emb_kl_loss = abs(kl(y_true=var_emb_batch, y_pred=embedding))
123
+ return var_emb_correlation_loss, emb_kl_loss
124
+
125
+ def correlation_loss(self, embedding, exp_gt_vec, exp_pr_vec, tr_conf_matrix):
126
+ bs_size = tf.shape(exp_pr_vec, out_type=tf.dtypes.int64)[0]
127
+ # convert from sigmoid to labels to real classes:
128
+ exp_pr = tf.constant([np.argmax(exp_pr_vec[i]) for i in range(bs_size)], dtype=tf.dtypes.int64)
129
+ # Cov matrix
130
+ phi_correlation_matrix = tf.cast(np.corrcoef(embedding), dtype=tf.dtypes.float32) # bs * bs
131
+
132
+ elems_col = tf.repeat(tf.expand_dims(exp_gt_vec, 0), repeats=[bs_size], axis=0)
133
+ elems_row = tf.repeat(tf.expand_dims(exp_gt_vec, -1), repeats=[bs_size], axis=-1)
134
+ delta = elems_row - elems_col
135
+ omega_matrix = tf.cast(tf.where(delta == 0, 1, -1), dtype=tf.dtypes.float32)
136
+ # creating the adaptive weights
137
+ adaptive_weight = self._create_adaptive_correlation_weights(bs_size=bs_size,
138
+ exp_gt_vec=exp_gt_vec, # real labels
139
+ exp_pr=exp_pr, # real labels
140
+ conf_mat=tr_conf_matrix)
141
+ # calculate correlation loss
142
+ cor_loss = tf.reduce_mean(adaptive_weight * tf.abs(omega_matrix - phi_correlation_matrix))
143
+ return cor_loss
144
+
145
+ def correlation_loss_multi(self, embeddings, exp_gt_vec, exp_pr_vec, tr_conf_matrix):
146
+ """
147
+ here, we consider only one embedding and so want to make the embeddings of the same classes be similar
148
+ while the ones from different classes are different.
149
+ :param embeddings:
150
+ :param exp_gt_vec:
151
+ :param exp_pr_vec:
152
+ :param tr_conf_matrix:
153
+ :return:
154
+ """
155
+ bs_size = tf.shape(exp_pr_vec, out_type=tf.dtypes.int64)[0]
156
+ exp_pr = tf.constant([np.argmax(exp_pr_vec[i]) for i in range(bs_size)], dtype=tf.dtypes.int64)
157
+
158
+ phi_correlation_matrices = [tf.cast(np.corrcoef(embeddings[i]), dtype=tf.dtypes.float32)
159
+ for i in range(len(embeddings))] # cls * bs * bs
160
+ #
161
+ elems_col = tf.repeat(tf.expand_dims(exp_gt_vec, 0), repeats=[bs_size], axis=0)
162
+ elems_row = tf.repeat(tf.expand_dims(exp_gt_vec, -1), repeats=[bs_size], axis=-1)
163
+ delta = elems_row - elems_col
164
+ omega_matrix = tf.repeat(tf.expand_dims(tf.cast(tf.where(delta == 0, 1, -1),
165
+ dtype=tf.dtypes.float32), axis=0),
166
+ repeats=len(embeddings), axis=0)
167
+ cor_loss = tf.reduce_mean(tf.abs(omega_matrix - phi_correlation_matrices))
168
+
169
+ return cor_loss
170
+
171
+ def _create_adaptive_correlation_weights(self, bs_size, exp_gt_vec, exp_pr, conf_mat):
172
+ """
173
+ creating the weights
174
+ :param exp_gt_vec: real int labels
175
+ :param exp_pr_vec: one_hot labels
176
+ :param conf_mat: confusion matrix which is normalized over the rows(
177
+ ground-truths with respect to the number of corresponding classes)
178
+ :return: a bath_size * bath_size matrix containing weights. The diameter of the matrix is zero
179
+ """
180
+ '''new'''
181
+ tf_identity = tf.eye(bs_size)
182
+ # weight based on the correct section of the conf_matrix
183
+ '''
184
+ 1 : - conf_mat[exp_gt_vec[i], exp_gt_vec[i]] : sum of all the missed values=> the better the performance of
185
+ the model on a label, the smaller the weight
186
+ '''
187
+ correct_row_base_weight = tf.repeat(tf.expand_dims(
188
+ tf.map_fn(fn=lambda i: 1 - conf_mat[i, i], elems=exp_gt_vec) # map
189
+ , 0), # expand_dims
190
+ repeats=[bs_size], axis=0) # repeat
191
+
192
+ correct_col_base_weight = tf.einsum('ab->ba', correct_row_base_weight)
193
+ correct_weight = correct_row_base_weight + correct_col_base_weight
194
+ adaptive_weight = tf.cast((correct_weight), dtype=tf.dtypes.float32)
195
+ adaptive_weight = 1 + adaptive_weight # we don't want the weights to be zero (correct prediction)
196
+ adaptive_weight = (1 - tf_identity) * adaptive_weight # remove the main diagon
197
+ return adaptive_weight
198
+
199
+ def update_confusion_matrix(self, exp_gt_vec, exp_pr,
200
+ all_gt_exp, all_pr_exp):
201
+ # adding to the previous predicted items:
202
+ all_pr_exp += np.array(exp_pr).tolist()
203
+ all_gt_exp += np.array(exp_gt_vec).tolist()
204
+ # calculate confusion matrix:
205
+ conf_mat = confusion_matrix(y_true=all_gt_exp, y_pred=all_pr_exp, normalize='true',
206
+ labels=[0, 1, 2, 3, 4, 5, 6])
207
+ return conf_mat, all_gt_exp, all_pr_exp
208
+
209
+ def cross_entropy_loss(self, y_gt, y_pr, num_classes, ds_name):
210
+ y_gt_oh = tf.one_hot(y_gt, depth=num_classes)
211
+ ''' manual weighted CE'''
212
+ y_pred = y_pr
213
+ y_pred /= tf.reduce_sum(y_pred, axis=-1, keepdims=True)
214
+ y_pred = K.clip(y_pred, K.epsilon(), 1)
215
+ loss = -tf.reduce_mean(y_gt_oh * tf.math.log(y_pred))
216
+ '''accuracy'''
217
+ accuracy = tf.reduce_mean(tf.keras.metrics.categorical_accuracy(y_pr, y_gt_oh))
218
+ return loss, accuracy
data_helper.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from config import DatasetName, AffectnetConf, InputDataSize, LearningConfig, ExpressionCodesAffectnet
2
+ from config import LearningConfig, InputDataSize, DatasetName, AffectnetConf, DatasetType
3
+
4
+ import numpy as np
5
+ import os
6
+ import matplotlib.pyplot as plt
7
+ import math
8
+ from datetime import datetime
9
+ from sklearn.utils import shuffle
10
+ from sklearn.model_selection import train_test_split
11
+ from numpy import save, load, asarray
12
+ import csv
13
+ from skimage.io import imread
14
+ import pickle
15
+ import csv
16
+ from tqdm import tqdm
17
+ from PIL import Image
18
+ from skimage.transform import resize
19
+ from skimage import transform
20
+ from skimage.transform import resize
21
+ import tensorflow as tf
22
+ import random
23
+ import cv2
24
+ from skimage.feature import hog
25
+ from skimage import data, exposure
26
+ from matplotlib.path import Path
27
+ from scipy import ndimage, misc
28
+ from skimage.transform import SimilarityTransform, AffineTransform
29
+ from skimage.draw import rectangle
30
+ from skimage.draw import line, set_color
31
+
32
+
33
+ class DataHelper:
34
+
35
+ def create_generator_full_path(self, img_path, annotation_path, label=None):
36
+ img_filenames, exp_filenames = self._create_image_and_labels_name_full_path(img_path=img_path,
37
+ annotation_path=annotation_path,
38
+ label=label)
39
+ '''shuffle'''
40
+ img_filenames, exp_filenames = shuffle(img_filenames, exp_filenames)
41
+ return img_filenames, exp_filenames
42
+
43
+ def _create_image_and_labels_name_full_path(self, img_path, annotation_path, label):
44
+ img_filenames = []
45
+ exp_filenames = []
46
+
47
+ print('reading list -->')
48
+ file_names = tqdm(os.listdir(img_path))
49
+ print('<-')
50
+
51
+ for file in file_names:
52
+ if file.endswith(".jpg") or file.endswith(".png"):
53
+ exp_lbl_file = str(file)[:-4] + "_exp.npy" # just name
54
+
55
+ if os.path.exists(annotation_path + exp_lbl_file):
56
+ if label is not None:
57
+ exp = np.load(annotation_path + exp_lbl_file)
58
+ if label is not None and exp != label:
59
+ continue
60
+
61
+ img_filenames.append(img_path + str(file))
62
+ exp_filenames.append(annotation_path + exp_lbl_file)
63
+
64
+ return np.array(img_filenames), np.array(exp_filenames)
65
+
66
+ def relabel_ds(self, labels):
67
+ new_labels = np.copy(labels)
68
+
69
+ index_src = [0, 1, 2, 3, 4, 5, 6, 7, 17, 18, 19, 20, 21, 31, 32, 36, 37, 38, 39, 40, 41, 48, 49, 50,
70
+ 60, 61, 67, 59, 58]
71
+ index_dst = [16, 15, 14, 13, 12, 11, 10, 9, 26, 25, 24, 23, 22, 35, 34, 45, 44, 43, 42, 47, 46, 54, 53, 52,
72
+ 64, 63, 65, 55, 56]
73
+
74
+ for i in range(len(index_src)):
75
+ new_labels[index_src[i] * 2] = labels[index_dst[i] * 2]
76
+ new_labels[index_src[i] * 2 + 1] = labels[index_dst[i] * 2 + 1]
77
+
78
+ new_labels[index_dst[i] * 2] = labels[index_src[i] * 2]
79
+ new_labels[index_dst[i] * 2 + 1] = labels[index_src[i] * 2 + 1]
80
+ return new_labels
dataset_class.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from config import DatasetName, AffectnetConf, InputDataSize, LearningConfig, ExpressionCodesAffectnet
2
+ from config import LearningConfig, InputDataSize, DatasetName, AffectnetConf, DatasetType
3
+
4
+ import numpy as np
5
+ import os
6
+ import matplotlib.pyplot as plt
7
+ import math
8
+ from datetime import datetime
9
+ from sklearn.utils import shuffle
10
+ from sklearn.model_selection import train_test_split
11
+ from numpy import save, load, asarray
12
+ import csv
13
+ from skimage.io import imread
14
+ import pickle
15
+ import csv
16
+ from tqdm import tqdm
17
+ from PIL import Image
18
+ from skimage.transform import resize
19
+ from skimage import transform
20
+ from skimage.transform import resize
21
+ import tensorflow as tf
22
+ import random
23
+ import cv2
24
+ from skimage.feature import hog
25
+ from skimage import data, exposure
26
+ from matplotlib.path import Path
27
+ from scipy import ndimage, misc
28
+ from skimage.transform import SimilarityTransform, AffineTransform
29
+ from skimage.draw import rectangle
30
+ from skimage.draw import line, set_color
31
+
32
+
33
+ class CustomDataset:
34
+
35
+ def create_dataset(self, img_filenames, anno_names, is_validation=False, ds=DatasetName.affectnet):
36
+ def get_img(file_name):
37
+ path = bytes.decode(file_name)
38
+ image_raw = tf.io.read_file(path)
39
+ img = tf.image.decode_image(image_raw, channels=3)
40
+ img = tf.cast(img, tf.float32) / 255.0
41
+ '''augmentation'''
42
+ # if not (is_validation):# or tf.random.uniform([]) <= 0.5):
43
+ # img = self._do_augment(img)
44
+ # ''''''
45
+ return img
46
+
47
+ def get_lbl(anno_name):
48
+ path = bytes.decode(anno_name)
49
+ lbl = load(path)
50
+ return lbl
51
+
52
+ def wrap_get_img(img_filename, anno_name):
53
+ img = tf.numpy_function(get_img, [img_filename], [tf.float32])
54
+ if is_validation and ds == DatasetName.affectnet:
55
+ lbl = tf.numpy_function(get_lbl, [anno_name], [tf.string])
56
+ else:
57
+ lbl = tf.numpy_function(get_lbl, [anno_name], [tf.int64])
58
+
59
+ return img, lbl
60
+
61
+ epoch_size = len(img_filenames)
62
+
63
+ img_filenames = tf.convert_to_tensor(img_filenames, dtype=tf.string)
64
+ anno_names = tf.convert_to_tensor(anno_names)
65
+
66
+ dataset = tf.data.Dataset.from_tensor_slices((img_filenames, anno_names))
67
+ dataset = dataset.shuffle(epoch_size)
68
+ dataset = dataset.map(wrap_get_img, num_parallel_calls=32) \
69
+ .batch(LearningConfig.batch_size, drop_remainder=True) \
70
+ .prefetch(10)
71
+ return dataset
img.jpg ADDED

Git LFS Details

  • SHA256: 1665ba86f301ef716b60651decddfd877f2662b1cf445f695a8d667bd7076814
  • Pointer size: 131 Bytes
  • Size of remote file: 112 kB
main.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from test_model import TestModels
2
+ from train import TrainModel
3
+ from config import DatasetName, DatasetType
4
+ if __name__ == "__main__":
5
+
6
+ '''testing the pre-trained models'''
7
+ tester = TestModels(h5_address='./trained_models/AffectNet_6336.h5')
8
+ tester.recognize_fer(img_path='./img.jpg')
9
+
10
+ '''training part'''
11
+ trainer = TrainModel(dataset_name=DatasetName.affectnet, ds_type=DatasetType.train_7)
12
+ trainer.train(arch="xcp", weight_path="./")
paper_graphical_items/confm.jpg ADDED

Git LFS Details

  • SHA256: 76d6377b833f1f02c95d6a836493240ca222d2a135b37b968b14e90fab3a8b5e
  • Pointer size: 131 Bytes
  • Size of remote file: 222 kB
paper_graphical_items/correlation_loss.jpg ADDED

Git LFS Details

  • SHA256: f3f821c817c5c548767f2502e1600791e044ebdb0b18c2adb3d42e2374628c53
  • Pointer size: 130 Bytes
  • Size of remote file: 49.8 kB
paper_graphical_items/embedding_TSNE.jpg ADDED

Git LFS Details

  • SHA256: 2999ae366d9788d8c5f1f37ee3b9ab2f4d5cd50b9d197c2659660525328a3ba1
  • Pointer size: 131 Bytes
  • Size of remote file: 702 kB
paper_graphical_items/fd_ed.jpg ADDED

Git LFS Details

  • SHA256: a382726cbbed88cd13357a98f3a4dec3c3dab2f3054c57b31b95987ad7dd5899
  • Pointer size: 131 Bytes
  • Size of remote file: 106 kB
paper_graphical_items/md_component.jpg ADDED

Git LFS Details

  • SHA256: 8d6de6c42788828f1332121dc65c4ff056dd88fd60ed6043fbe757f2741ccc3e
  • Pointer size: 130 Bytes
  • Size of remote file: 58.1 kB
paper_graphical_items/samples.jpg ADDED

Git LFS Details

  • SHA256: d4c20ff8733a96b365fcee6e3769a677e3ed8f2946be2c0ecc535b594046fffb
  • Pointer size: 131 Bytes
  • Size of remote file: 266 kB
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ bottleneck
2
+ tensorflow-gpu==2.4
3
+ keras
4
+ numpy
5
+ matplotlib
6
+ opencv-python
7
+ opencv-contrib-python
8
+ scipy
9
+ scikit-learn
10
+ scikit-image
11
+ Pillow
12
+ tqdm
13
+ tensorboard
test_model.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import tensorflow as tf
3
+ import tensorflow.keras as keras
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ import math
7
+ from datetime import datetime
8
+ from numpy import save, load, asarray
9
+ import csv
10
+ from skimage.io import imread
11
+ from skimage.transform import resize
12
+ import pickle
13
+ from PIL import Image
14
+
15
+ import os
16
+
17
+ # tf.test.is_gpu_available()
18
+
19
+ class TestModels:
20
+ def __init__(self, h5_address:str, GPU=True):
21
+ self.exps = ['Neutral', 'Happy', 'Sad', 'Surprise', 'Fear', 'Disgust', 'Anger']
22
+
23
+ if GPU:
24
+ physical_devices = tf.config.list_physical_devices('GPU')
25
+ tf.config.experimental.set_memory_growth(physical_devices[0], True)
26
+
27
+ self.model = self.load_model(h5_address=h5_address)
28
+
29
+ def load_model(self, h5_address: str):
30
+ "load weight file and create the model once"
31
+ model = tf.keras.models.load_model(h5_address, custom_objects={'tf': tf})
32
+ return model
33
+
34
+ def recognize_fer(self, img_path:str):
35
+ "create and image from the path and recognize expression"
36
+ img = imread(img_path)
37
+ # resize img to 1*224*224*3
38
+ img = resize(img, (224, 224,3))
39
+ img = np.expand_dims(img, axis=0)
40
+ #
41
+ prediction = self.model.predict_on_batch([img])
42
+ exp = np.array(prediction[0])
43
+ '''in case you need the embeddings'''
44
+ # embeddings = prediction[1:]
45
+ print(self.exps[np.argmax(exp)])
46
+
47
+
train.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ import math
6
+ from datetime import datetime
7
+ from sklearn.utils import shuffle
8
+ from sklearn.model_selection import train_test_split
9
+ from numpy import save, load, asarray
10
+ import csv
11
+ from skimage.io import imread
12
+ import pickle
13
+ from sklearn.metrics import accuracy_score
14
+ import os
15
+ import time
16
+
17
+ from AffectNetClass import AffectNet
18
+ from RafdbClass import RafDB
19
+ from FerPlusClass import FerPlus
20
+
21
+ from config import DatasetName, AffectnetConf, InputDataSize, LearningConfig, DatasetType, RafDBConf, FerPlusConf
22
+ from cnn_model import CNNModel
23
+ from custom_loss import CustomLosses
24
+ from data_helper import DataHelper
25
+ from dataset_class import CustomDataset
26
+
27
+
28
+ class TrainModel:
29
+ def __init__(self, dataset_name, ds_type, weights='imagenet', lr=1e-3, aug=True):
30
+ self.dataset_name = dataset_name
31
+ self.ds_type = ds_type
32
+ self.weights = weights
33
+ self.lr = lr
34
+
35
+ self.base_lr = 1e-5
36
+ self.max_lr = 5e-4
37
+ if dataset_name == DatasetName.fer2013:
38
+ self.drop = 0.1
39
+ self.epochs_drop = 5
40
+ if aug:
41
+ self.img_path = FerPlusConf.aug_train_img_path
42
+ self.annotation_path = FerPlusConf.aug_train_annotation_path
43
+ self.masked_img_path = FerPlusConf.aug_train_masked_img_path
44
+ else:
45
+ self.img_path = FerPlusConf.no_aug_train_img_path
46
+ self.annotation_path = FerPlusConf.no_aug_train_annotation_path
47
+
48
+ self.val_img_path = FerPlusConf.test_img_path
49
+ self.val_annotation_path = FerPlusConf.test_annotation_path
50
+ self.eval_masked_img_path = FerPlusConf.test_masked_img_path
51
+ self.num_of_classes = 7
52
+ self.num_of_samples = None
53
+
54
+ elif dataset_name == DatasetName.rafdb:
55
+ self.drop = 0.1
56
+ self.epochs_drop = 5
57
+
58
+ if aug:
59
+ self.img_path = RafDBConf.aug_train_img_path
60
+ self.annotation_path = RafDBConf.aug_train_annotation_path
61
+ self.masked_img_path = RafDBConf.aug_train_masked_img_path
62
+ else:
63
+ self.img_path = RafDBConf.no_aug_train_img_path
64
+ self.annotation_path = RafDBConf.no_aug_train_annotation_path
65
+
66
+ self.val_img_path = RafDBConf.test_img_path
67
+ self.val_annotation_path = RafDBConf.test_annotation_path
68
+ self.eval_masked_img_path = RafDBConf.test_masked_img_path
69
+ self.num_of_classes = 7
70
+ self.num_of_samples = None
71
+
72
+ elif dataset_name == DatasetName.affectnet:
73
+ self.drop = 0.1
74
+ self.epochs_drop = 5
75
+
76
+ if ds_type == DatasetType.train:
77
+ self.img_path = AffectnetConf.aug_train_img_path
78
+ self.annotation_path = AffectnetConf.aug_train_annotation_path
79
+ self.masked_img_path = AffectnetConf.aug_train_masked_img_path
80
+ self.val_img_path = AffectnetConf.eval_img_path
81
+ self.val_annotation_path = AffectnetConf.eval_annotation_path
82
+ self.eval_masked_img_path = AffectnetConf.eval_masked_img_path
83
+ self.num_of_classes = 8
84
+ self.num_of_samples = AffectnetConf.num_of_samples_train
85
+ elif ds_type == DatasetType.train_7:
86
+ if aug:
87
+ self.img_path = AffectnetConf.aug_train_img_path_7
88
+ self.annotation_path = AffectnetConf.aug_train_annotation_path_7
89
+ self.masked_img_path = AffectnetConf.aug_train_masked_img_path_7
90
+ else:
91
+ self.img_path = AffectnetConf.no_aug_train_img_path_7
92
+ self.annotation_path = AffectnetConf.no_aug_train_annotation_path_7
93
+
94
+ self.val_img_path = AffectnetConf.eval_img_path_7
95
+ self.val_annotation_path = AffectnetConf.eval_annotation_path_7
96
+ self.eval_masked_img_path = AffectnetConf.eval_masked_img_path_7
97
+ self.num_of_classes = 7
98
+ self.num_of_samples = AffectnetConf.num_of_samples_train_7
99
+
100
+ def train(self, arch, weight_path):
101
+ """"""
102
+
103
+ '''create loss'''
104
+ c_loss = CustomLosses()
105
+
106
+ '''create summary writer'''
107
+ summary_writer = tf.summary.create_file_writer(
108
+ "./train_logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S"))
109
+ start_train_date = datetime.now().strftime("%Y%m%d-%H%M%S")
110
+
111
+ '''making models'''
112
+ model = self.make_model(arch=arch, w_path=weight_path)
113
+ '''create save path'''
114
+ if self.dataset_name == DatasetName.affectnet:
115
+ save_path = AffectnetConf.weight_save_path + start_train_date + '/'
116
+ elif self.dataset_name == DatasetName.rafdb:
117
+ save_path = RafDBConf.weight_save_path + start_train_date + '/'
118
+ elif self.dataset_name == DatasetName.fer2013:
119
+ save_path = FerPlusConf.weight_save_path + start_train_date + '/'
120
+ if not os.path.exists(save_path):
121
+ os.makedirs(save_path)
122
+
123
+ '''create sample generator'''
124
+ dhp = DataHelper()
125
+
126
+ ''' Train Generator'''
127
+ img_filenames, exp_filenames = dhp.create_generator_full_path(img_path=self.img_path,
128
+ annotation_path=self.annotation_path)
129
+ '''create dataset'''
130
+ cds = CustomDataset()
131
+ ds = cds.create_dataset(img_filenames=img_filenames,
132
+ anno_names=exp_filenames,
133
+ is_validation=False)
134
+
135
+ '''create train configuration'''
136
+ step_per_epoch = len(img_filenames) // LearningConfig.batch_size
137
+ gradients = None
138
+ virtual_step_per_epoch = LearningConfig.virtual_batch_size // LearningConfig.batch_size
139
+
140
+ '''create optimizer'''
141
+ optimizer = tf.keras.optimizers.Adam(self.lr, decay=1e-5)
142
+
143
+ '''start train:'''
144
+ all_gt_exp = []
145
+ all_pr_exp = []
146
+
147
+ for epoch in range(LearningConfig.epochs):
148
+ ce_weight = 2
149
+ batch_index = 0
150
+
151
+ for img_batch, exp_batch in ds:
152
+ '''since the calculation of the confusion matrix will be time-consuming,
153
+ we only save 1000 labels each time. Moreover, this help us to be more qiuck on updates
154
+ '''
155
+ all_gt_exp, all_pr_exp = self._update_all_labels_arrays(all_gt_exp, all_pr_exp)
156
+ '''load annotation and images'''
157
+ '''squeeze'''
158
+ exp_batch = exp_batch[:, -1]
159
+ img_batch = img_batch[:, -1, :, :]
160
+
161
+ '''train step'''
162
+ step_gradients, all_gt_exp, all_pr_exp = self.train_step(epoch=epoch, step=batch_index,
163
+ total_steps=step_per_epoch,
164
+ img_batch=img_batch,
165
+ anno_exp=exp_batch,
166
+ model=model, optimizer=optimizer,
167
+ c_loss=c_loss,
168
+ ce_weight=ce_weight,
169
+ summary_writer=summary_writer,
170
+ all_gt_exp=all_gt_exp,
171
+ all_pr_exp=all_pr_exp)
172
+ batch_index += 1
173
+
174
+ '''evaluating part'''
175
+ global_accuracy, conf_mat, avg_acc = self._eval_model(model=model)
176
+ '''save weights'''
177
+ save_name = save_path + '_' + str(epoch) + '_' + self.dataset_name + '_AC_' + str(global_accuracy)
178
+ model.save(save_name + '.h5')
179
+ self._save_confusion_matrix(conf_mat, save_name + '.txt')
180
+
181
+ def train_step(self, epoch, step, total_steps, model, ce_weight,
182
+ img_batch, anno_exp, optimizer, summary_writer, c_loss, all_gt_exp, all_pr_exp):
183
+ with tf.GradientTape() as tape:
184
+ pr_data = model([img_batch], training=True)
185
+ exp_pr_vec = pr_data[0]
186
+ embeddings = pr_data[1:]
187
+
188
+ bs_size = tf.shape(exp_pr_vec, out_type=tf.dtypes.int64)[0]
189
+
190
+ loss_exp, accuracy = c_loss.cross_entropy_loss(y_pr=exp_pr_vec, y_gt=anno_exp,
191
+ num_classes=self.num_of_classes,
192
+ ds_name=self.dataset_name)
193
+
194
+ '''Feature difference loss'''
195
+ # embedding_similarity_loss = 0
196
+ embedding_similarity_loss = c_loss.embedding_loss_distance(embeddings=embeddings)
197
+
198
+ '''update confusion matrix'''
199
+ exp_pr = tf.constant([np.argmax(exp_pr_vec[i]) for i in range(bs_size)], dtype=tf.dtypes.int64)
200
+ tr_conf_matrix, all_gt_exp, all_pr_exp = c_loss.update_confusion_matrix(anno_exp, # real labels
201
+ exp_pr, # real labels
202
+ all_gt_exp,
203
+ all_pr_exp)
204
+ ''' correlation between the embeddings'''
205
+ correlation_loss = c_loss.correlation_loss_multi(embeddings=embeddings,
206
+ exp_gt_vec=anno_exp,
207
+ exp_pr_vec=exp_pr_vec,
208
+ tr_conf_matrix=tr_conf_matrix)
209
+ '''mean loss'''
210
+ mean_correlation_loss = c_loss.mean_embedding_loss_distance(embeddings=embeddings,
211
+ exp_gt_vec=anno_exp,
212
+ exp_pr_vec=exp_pr_vec,
213
+ num_of_classes=self.num_of_classes)
214
+
215
+ lamda_param = 50
216
+ loss_total = lamda_param * loss_exp + \
217
+ embedding_similarity_loss + \
218
+ correlation_loss + \
219
+ mean_correlation_loss
220
+
221
+ # '''calculate gradient'''
222
+ gradients_of_model = tape.gradient(loss_total, model.trainable_variables)
223
+ # '''apply Gradients:'''
224
+ optimizer.apply_gradients(zip(gradients_of_model, model.trainable_variables))
225
+ # '''printing loss Values: '''
226
+ tf.print("->EPOCH: ", str(epoch), "->STEP: ", str(step) + '/' + str(total_steps),
227
+ ' -> : accuracy: ', accuracy,
228
+ ' -> : loss_total: ', loss_total,
229
+ ' -> : loss_exp: ', loss_exp,
230
+ ' -> : embedding_similarity_loss: ', embedding_similarity_loss,
231
+ ' -> : correlation_loss: ', correlation_loss,
232
+ ' -> : mean_correlation_loss: ', mean_correlation_loss)
233
+ with summary_writer.as_default():
234
+ tf.summary.scalar('loss_total', loss_total, step=epoch)
235
+ tf.summary.scalar('loss_exp', loss_exp, step=epoch)
236
+ tf.summary.scalar('correlation_loss', correlation_loss, step=epoch)
237
+ tf.summary.scalar('mean_correlation_loss', mean_correlation_loss, step=epoch)
238
+ tf.summary.scalar('embedding_similarity_loss', embedding_similarity_loss, step=epoch)
239
+ return gradients_of_model, all_gt_exp, all_pr_exp
240
+
241
+ def train_step_old(self, epoch, step, total_steps, model, ce_weight,
242
+ img_batch, anno_exp, optimizer, summary_writer, c_loss, all_gt_exp, all_pr_exp):
243
+ with tf.GradientTape() as tape:
244
+ # '''create annotation_predicted'''
245
+ # exp_pr, embedding = model([img_batch], training=True)
246
+ exp_pr_vec, embedding_class, embedding_mean, embedding_var = model([img_batch], training=True)
247
+
248
+ bs_size = tf.shape(exp_pr_vec, out_type=tf.dtypes.int64)[0]
249
+ # # '''CE loss'''
250
+ loss_exp, accuracy = c_loss.cross_entropy_loss(y_pr=exp_pr_vec, y_gt=anno_exp,
251
+ num_classes=self.num_of_classes,
252
+ ds_name=self.dataset_name)
253
+ #
254
+ loss_cls_mean, loss_cls_var, loss_mean_var = c_loss.embedding_loss_distance(
255
+ embedding_class=embedding_class,
256
+ embedding_mean=embedding_mean,
257
+ embedding_var=embedding_var,
258
+ bs_size=bs_size)
259
+ feature_diff_loss = loss_cls_mean + loss_cls_var + loss_mean_var
260
+
261
+ # correlation between the class_embeddings
262
+ cor_loss, all_gt_exp, all_pr_exp = c_loss.correlation_loss(embedding=embedding_class, # distribution
263
+ exp_gt_vec=anno_exp,
264
+ exp_pr_vec=exp_pr_vec,
265
+ num_of_classes=self.num_of_classes,
266
+ all_gt_exp=all_gt_exp,
267
+ all_pr_exp=all_pr_exp)
268
+ # correlation between the mean_emb_cor_loss
269
+ mean_emb_cor_loss, mean_emb_kl_loss = c_loss.mean_embedding_loss(embedding=embedding_mean,
270
+ exp_gt_vec=anno_exp,
271
+ exp_pr_vec=exp_pr_vec,
272
+ num_of_classes=self.num_of_classes)
273
+ mean_loss = mean_emb_cor_loss + 10 * mean_emb_kl_loss
274
+
275
+ var_emb_cor_loss, var_emb_kl_loss = c_loss.variance_embedding_loss(embedding=embedding_var,
276
+ exp_gt_vec=anno_exp,
277
+ exp_pr_vec=exp_pr_vec,
278
+ num_of_classes=self.num_of_classes)
279
+ var_loss = var_emb_cor_loss + 10 * var_emb_kl_loss
280
+ # '''total:'''
281
+ loss_total = 100 * loss_exp + cor_loss + 10 * feature_diff_loss + mean_loss + var_loss
282
+
283
+ # '''calculate gradient'''
284
+ gradients_of_model = tape.gradient(loss_total, model.trainable_variables)
285
+ # '''apply Gradients:'''
286
+ optimizer.apply_gradients(zip(gradients_of_model, model.trainable_variables))
287
+ # '''printing loss Values: '''
288
+ tf.print("->EPOCH: ", str(epoch), "->STEP: ", str(step) + '/' + str(total_steps),
289
+ ' -> : accuracy: ', accuracy,
290
+ ' -> : loss_total: ', loss_total,
291
+ ' -> : loss_exp: ', loss_exp,
292
+ ' -> : cor_loss: ', cor_loss,
293
+ ' -> : feature_loss: ', feature_diff_loss,
294
+ ' -> : mean_loss: ', mean_loss,
295
+ ' -> : var_loss: ', var_loss)
296
+
297
+ with summary_writer.as_default():
298
+ tf.summary.scalar('loss_total', loss_total, step=epoch)
299
+ tf.summary.scalar('loss_exp', loss_exp, step=epoch)
300
+ tf.summary.scalar('loss_correlation', cor_loss, step=epoch)
301
+ return gradients_of_model, all_gt_exp, all_pr_exp
302
+
303
+ def _eval_model(self, model):
304
+ """"""
305
+ '''first we need to create the 4 bunch here: '''
306
+
307
+ '''for Affectnet, we need to calculate accuracy of each label and then total avg accuracy:'''
308
+ global_accuracy = 0
309
+ avg_acc = 0
310
+ conf_mat = []
311
+ if self.dataset_name == DatasetName.affectnet:
312
+ if self.ds_type == DatasetType.train:
313
+ affn = AffectNet(ds_type=DatasetType.eval)
314
+ else:
315
+ affn = AffectNet(ds_type=DatasetType.eval_7)
316
+ global_accuracy, conf_mat, avg_acc, precision, recall, fscore, support = \
317
+ affn.test_accuracy(model=model)
318
+ elif self.dataset_name == DatasetName.rafdb:
319
+ rafdb = RafDB(ds_type=DatasetType.test)
320
+ global_accuracy, conf_mat, avg_acc, precision, recall, fscore, support = rafdb.test_accuracy(model=model)
321
+ elif self.dataset_name == DatasetName.fer2013:
322
+ ferplus = FerPlus(ds_type=DatasetType.test)
323
+ global_accuracy, conf_mat, avg_acc, precision, recall, fscore, support = ferplus.test_accuracy(model=model)
324
+ print("================== global_accuracy =====================")
325
+ print(global_accuracy)
326
+ print("================== Average Accuracy =====================")
327
+ print(avg_acc)
328
+ print("================== Confusion Matrix =====================")
329
+ print(conf_mat)
330
+ return global_accuracy, conf_mat, avg_acc
331
+
332
+ def make_model(self, arch, w_path):
333
+ cnn = CNNModel()
334
+ model = cnn.get_model(arch=arch, num_of_classes=LearningConfig.num_classes, weights=self.weights)
335
+ if w_path is not None:
336
+ model.load_weights(w_path)
337
+ return model
338
+
339
+ def _save_confusion_matrix(self, conf_mat, save_name):
340
+ f = open(save_name, "a")
341
+ print(save_name)
342
+ f.write(np.array_str(conf_mat))
343
+ f.close()
344
+
345
+ def _update_all_labels_arrays(self, all_gt_exp, all_pr_exp):
346
+ if len(all_gt_exp) < LearningConfig.labels_history_frame:
347
+ return all_gt_exp, all_pr_exp
348
+ else: # remove the first batch:
349
+ return all_gt_exp[LearningConfig.batch_size:], all_pr_exp[LearningConfig.batch_size:]
trained_models/AffectNet_6336.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f78e385a7c780a5f95e9f0772ec6ca18564b776875b1269d2858ad168df7956
3
+ size 98617720
trained_models/Fer2013_7203.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60caf5d2b95d84225c8197950d973ddd35523f50a577157f0f4885df2633d28d
3
+ size 98617752
trained_models/RafDB_8696.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dfe5e381ccce39e922479aa4a99bdcf5460dab0b421d99cc1d76a79d4c6b4d9
3
+ size 98617728