|
from datasets import load_dataset |
|
from transformers import TrOCRProcessor, VisionEncoderDecoderModel |
|
import torch |
|
from PIL import Image |
|
import requests |
|
|
|
|
|
dataset = load_dataset("nielsr/funsd") |
|
|
|
|
|
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed") |
|
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed") |
|
|
|
|
|
def preprocess_images(examples): |
|
images = [Image.open(img).convert("RGB") for img in examples['image_path']] |
|
pixel_values = processor(images=images, return_tensors="pt").pixel_values |
|
return {"pixel_values": pixel_values} |
|
|
|
encoded_dataset = dataset.map(preprocess_images, batched=True) |
|
|
|
|
|
max_length = 64 |
|
|
|
def preprocess_labels(examples): |
|
labels = processor.tokenizer(examples['words'], is_split_into_words=True, padding="max_length", max_length=max_length, truncation=True) |
|
return labels |
|
|
|
encoded_dataset = encoded_dataset.map(preprocess_labels, batched=True) |
|
|
|
|
|
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id |
|
model.config.pad_token_id = processor.tokenizer.pad_token_id |
|
|
|
|
|
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments |
|
|
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir="./trocr-finetuned-funsd", |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=8, |
|
learning_rate=5e-5, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
logging_dir="./trocr-finetuned-funsd/logs", |
|
logging_steps=10, |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
) |
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=encoded_dataset["train"], |
|
eval_dataset=encoded_dataset["test"], |
|
tokenizer=processor.tokenizer, |
|
) |
|
|
|
|
|
trainer.train() |