patrickvonplaten commited on
Commit
d41cfd0
·
1 Parent(s): ca4795a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -76,7 +76,7 @@ Here are some results:
76
  ## Long Video Generation
77
 
78
  You can optimize for memory usage by enabling attention and VAE slicing and using Torch 2.0.
79
- This should allow you to generate videos up to 10 seconds on less than 16GB of GPU VRAM.
80
 
81
  ```bash
82
  $ pip install git+https://github.com/huggingface/diffusers transformers accelerate
@@ -88,7 +88,7 @@ from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
88
  from diffusers.utils import export_to_video
89
 
90
  # load pipeline
91
- pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b-legacy", torch_dtype=torch.float16, variant="fp16")
92
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
93
 
94
  # optimize for GPU memory
@@ -96,8 +96,8 @@ pipe.enable_model_cpu_offload()
96
  pipe.enable_vae_slicing()
97
 
98
  # generate
99
- prompt = "Spiderman is surfing"
100
- video_frames = pipe(prompt, num_inference_steps=25, num_frames=80).frames
101
 
102
  # convent to video
103
  video_path = export_to_video(video_frames)
 
76
  ## Long Video Generation
77
 
78
  You can optimize for memory usage by enabling attention and VAE slicing and using Torch 2.0.
79
+ This should allow you to generate videos up to 25 seconds on less than 16GB of GPU VRAM.
80
 
81
  ```bash
82
  $ pip install git+https://github.com/huggingface/diffusers transformers accelerate
 
88
  from diffusers.utils import export_to_video
89
 
90
  # load pipeline
91
+ pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
92
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
93
 
94
  # optimize for GPU memory
 
96
  pipe.enable_vae_slicing()
97
 
98
  # generate
99
+ prompt = Spiderman is surfing. Darth Vader is also surfing and following Spiderman"
100
+ video_frames = pipe(prompt, num_inference_steps=25, num_frames=200).frames
101
 
102
  # convent to video
103
  video_path = export_to_video(video_frames)