alex-atelo commited on
Commit
a538084
·
verified ·
1 Parent(s): 407210b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -1
README.md CHANGED
@@ -4,8 +4,13 @@ base_model: google/mt5-small
4
  tags:
5
  - summarization
6
  - generated_from_trainer
 
 
 
7
  metrics:
8
  - rouge
 
 
9
  model-index:
10
  - name: mt5-small-finetuned-xlsum-en-es
11
  results: []
@@ -16,7 +21,10 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # mt5-small-finetuned-xlsum-en-es
18
 
19
- This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
 
 
 
20
  It achieves the following results on the evaluation set:
21
  - Loss: 2.9483
22
  - Rouge1: 19.42
@@ -31,6 +39,10 @@ More information needed
31
 
32
  ## Intended uses & limitations
33
 
 
 
 
 
34
  More information needed
35
 
36
  ## Training and evaluation data
@@ -65,3 +77,31 @@ The following hyperparameters were used during training:
65
  - Pytorch 2.2.1+cu121
66
  - Datasets 2.18.0
67
  - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  tags:
5
  - summarization
6
  - generated_from_trainer
7
+ language:
8
+ - en
9
+ - es
10
  metrics:
11
  - rouge
12
+ datasets:
13
+ - csebuetnlp/xlsum
14
  model-index:
15
  - name: mt5-small-finetuned-xlsum-en-es
16
  results: []
 
21
 
22
  # mt5-small-finetuned-xlsum-en-es
23
 
24
+ This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the csebuetnlp/xlsum dataset.
25
+
26
+ A reduced version of the English/Spanish subsets were used, focusing on shorter targets.
27
+
28
  It achieves the following results on the evaluation set:
29
  - Loss: 2.9483
30
  - Rouge1: 19.42
 
39
 
40
  ## Intended uses & limitations
41
 
42
+ Model may produce false information when summarizing.
43
+
44
+ This is very much an initial draft, and is not expected for use in production, use at your own risk.
45
+
46
  More information needed
47
 
48
  ## Training and evaluation data
 
77
  - Pytorch 2.2.1+cu121
78
  - Datasets 2.18.0
79
  - Tokenizers 0.15.2
80
+
81
+
82
+ ## Citation
83
+
84
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
85
+
86
+ **BibTeX:**
87
+
88
+ ```
89
+ @inproceedings{hasan-etal-2021-xl,
90
+ title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages",
91
+ author = "Hasan, Tahmid and
92
+ Bhattacharjee, Abhik and
93
+ Islam, Md. Saiful and
94
+ Mubasshir, Kazi and
95
+ Li, Yuan-Fang and
96
+ Kang, Yong-Bin and
97
+ Rahman, M. Sohel and
98
+ Shahriyar, Rifat",
99
+ booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
100
+ month = aug,
101
+ year = "2021",
102
+ address = "Online",
103
+ publisher = "Association for Computational Linguistics",
104
+ url = "https://aclanthology.org/2021.findings-acl.413",
105
+ pages = "4693--4703",
106
+ }
107
+ ```