# visualize zero-shot inference results on custom images ######################################################## # RegionCLIP (RN50x4) python3 ./tools/train_net.py \ --eval-only \ --num-gpus 1 \ --config-file ./configs/LVISv1-InstanceSegmentation/CLIP_fast_rcnn_R_50_C4_custom_img.yaml \ MODEL.WEIGHTS ./pretrained_ckpt/regionclip/regionclip_pretrained-cc_rn50x4.pth \ MODEL.CLIP.TEXT_EMB_PATH ./pretrained_ckpt/concept_emb/lvis_1203_cls_emb_rn50x4.pth \ MODEL.CLIP.OFFLINE_RPN_CONFIG ./configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \ MODEL.CLIP.TEXT_EMB_DIM 640 \ MODEL.RESNETS.DEPTH 200 \ MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION 18 \ # visualize the prediction json file python ./tools/visualize_json_results.py \ --input ./output/inference/lvis_instances_results.json \ --output ./output/regions \ --dataset lvis_v1_val_custom_img \ --conf-threshold 0.05 \ --show-unique-boxes \ --max-boxes 25 \ --small-region-px 8100\ ######################################################## # RegionCLIP (RN50) # python3 ./tools/train_net.py \ # --eval-only \ # --num-gpus 1 \ # --config-file ./configs/LVISv1-InstanceSegmentation/CLIP_fast_rcnn_R_50_C4_custom_img.yaml \ # MODEL.WEIGHTS ./pretrained_ckpt/regionclip/regionclip_pretrained-cc_rn50.pth \ # MODEL.CLIP.TEXT_EMB_PATH ./pretrained_ckpt/concept_emb/lvis_1203_cls_emb.pth \ # MODEL.CLIP.OFFLINE_RPN_CONFIG ./configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \ # # visualize the prediction json file # python ./tools/visualize_json_results.py \ # --input ./output/inference/lvis_instances_results.json \ # --output ./output/regions \ # --dataset lvis_v1_val_custom_img \ # --conf-threshold 0.05 \ # --show-unique-boxes \ # --max-boxes 25 \ # --small-region-px 8100\