akhilfau commited on
Commit
8941fe4
·
verified ·
1 Parent(s): 7128176

Upload folder using huggingface_hub

Browse files
checkpoint-11500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: HuggingFaceTB/SmolLM2-135M
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-11500/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceTB/SmolLM2-135M",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-11500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3485375d79f5262e1be98bf7f7535292ae8ca59e2030c48512365d1c6ef0321
3
+ size 3702168
checkpoint-11500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef4a19811929d27023acaf3740856fd3556c392c8f16563332be230d78b36747
3
+ size 7473658
checkpoint-11500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63abaa6a9a4d63fe25da5196438ef04054105daf8d37994164c777f9cf9cd6eb
3
+ size 14244
checkpoint-11500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b92ff34f57c8bd696c4446e5b8e3000ded93ede6917f5ca7dca792504cbe262c
3
+ size 1064
checkpoint-11500/trainer_state.json ADDED
@@ -0,0 +1,854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.875,
5
+ "eval_steps": 500,
6
+ "global_step": 11500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.025,
13
+ "grad_norm": 0.2082100212574005,
14
+ "learning_rate": 0.0004958333333333334,
15
+ "loss": 1.3502,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "grad_norm": 0.1778642237186432,
21
+ "learning_rate": 0.0004916666666666666,
22
+ "loss": 1.1649,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 0.075,
27
+ "grad_norm": 0.2463778257369995,
28
+ "learning_rate": 0.0004875,
29
+ "loss": 1.1395,
30
+ "step": 300
31
+ },
32
+ {
33
+ "epoch": 0.1,
34
+ "grad_norm": 0.20819446444511414,
35
+ "learning_rate": 0.00048333333333333334,
36
+ "loss": 1.1056,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 0.125,
41
+ "grad_norm": 0.23243966698646545,
42
+ "learning_rate": 0.0004791666666666667,
43
+ "loss": 1.1329,
44
+ "step": 500
45
+ },
46
+ {
47
+ "epoch": 0.15,
48
+ "grad_norm": 0.19812804460525513,
49
+ "learning_rate": 0.000475,
50
+ "loss": 1.1169,
51
+ "step": 600
52
+ },
53
+ {
54
+ "epoch": 0.175,
55
+ "grad_norm": 0.2258671671152115,
56
+ "learning_rate": 0.00047083333333333336,
57
+ "loss": 1.1318,
58
+ "step": 700
59
+ },
60
+ {
61
+ "epoch": 0.2,
62
+ "grad_norm": 0.20714746415615082,
63
+ "learning_rate": 0.00046666666666666666,
64
+ "loss": 1.114,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 0.225,
69
+ "grad_norm": 0.22002336382865906,
70
+ "learning_rate": 0.0004625,
71
+ "loss": 1.1269,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 0.25,
76
+ "grad_norm": 0.2159491330385208,
77
+ "learning_rate": 0.0004583333333333333,
78
+ "loss": 1.0694,
79
+ "step": 1000
80
+ },
81
+ {
82
+ "epoch": 0.275,
83
+ "grad_norm": 0.20638039708137512,
84
+ "learning_rate": 0.0004541666666666667,
85
+ "loss": 1.0929,
86
+ "step": 1100
87
+ },
88
+ {
89
+ "epoch": 0.3,
90
+ "grad_norm": 0.2234920710325241,
91
+ "learning_rate": 0.00045000000000000004,
92
+ "loss": 1.0903,
93
+ "step": 1200
94
+ },
95
+ {
96
+ "epoch": 0.325,
97
+ "grad_norm": 0.23063984513282776,
98
+ "learning_rate": 0.00044583333333333335,
99
+ "loss": 1.095,
100
+ "step": 1300
101
+ },
102
+ {
103
+ "epoch": 0.35,
104
+ "grad_norm": 0.221044659614563,
105
+ "learning_rate": 0.00044166666666666665,
106
+ "loss": 1.0859,
107
+ "step": 1400
108
+ },
109
+ {
110
+ "epoch": 0.375,
111
+ "grad_norm": 0.19685755670070648,
112
+ "learning_rate": 0.0004375,
113
+ "loss": 1.0643,
114
+ "step": 1500
115
+ },
116
+ {
117
+ "epoch": 0.4,
118
+ "grad_norm": 0.2428029328584671,
119
+ "learning_rate": 0.00043333333333333337,
120
+ "loss": 1.0715,
121
+ "step": 1600
122
+ },
123
+ {
124
+ "epoch": 0.425,
125
+ "grad_norm": 0.21401169896125793,
126
+ "learning_rate": 0.00042916666666666667,
127
+ "loss": 1.0821,
128
+ "step": 1700
129
+ },
130
+ {
131
+ "epoch": 0.45,
132
+ "grad_norm": 0.23752962052822113,
133
+ "learning_rate": 0.000425,
134
+ "loss": 1.0936,
135
+ "step": 1800
136
+ },
137
+ {
138
+ "epoch": 0.475,
139
+ "grad_norm": 0.23333564400672913,
140
+ "learning_rate": 0.00042083333333333333,
141
+ "loss": 1.0842,
142
+ "step": 1900
143
+ },
144
+ {
145
+ "epoch": 0.5,
146
+ "grad_norm": 0.2038385421037674,
147
+ "learning_rate": 0.0004166666666666667,
148
+ "loss": 1.0831,
149
+ "step": 2000
150
+ },
151
+ {
152
+ "epoch": 0.525,
153
+ "grad_norm": 0.24392388761043549,
154
+ "learning_rate": 0.0004125,
155
+ "loss": 1.069,
156
+ "step": 2100
157
+ },
158
+ {
159
+ "epoch": 0.55,
160
+ "grad_norm": 0.2810049057006836,
161
+ "learning_rate": 0.00040833333333333336,
162
+ "loss": 1.0649,
163
+ "step": 2200
164
+ },
165
+ {
166
+ "epoch": 0.575,
167
+ "grad_norm": 0.24431484937667847,
168
+ "learning_rate": 0.00040416666666666666,
169
+ "loss": 1.0955,
170
+ "step": 2300
171
+ },
172
+ {
173
+ "epoch": 0.6,
174
+ "grad_norm": 0.2268693745136261,
175
+ "learning_rate": 0.0004,
176
+ "loss": 1.0639,
177
+ "step": 2400
178
+ },
179
+ {
180
+ "epoch": 0.625,
181
+ "grad_norm": 0.22379685938358307,
182
+ "learning_rate": 0.0003958333333333333,
183
+ "loss": 1.0864,
184
+ "step": 2500
185
+ },
186
+ {
187
+ "epoch": 0.65,
188
+ "grad_norm": 0.22857442498207092,
189
+ "learning_rate": 0.0003916666666666667,
190
+ "loss": 1.0895,
191
+ "step": 2600
192
+ },
193
+ {
194
+ "epoch": 0.675,
195
+ "grad_norm": 0.22649641335010529,
196
+ "learning_rate": 0.00038750000000000004,
197
+ "loss": 1.0656,
198
+ "step": 2700
199
+ },
200
+ {
201
+ "epoch": 0.7,
202
+ "grad_norm": 0.2611943185329437,
203
+ "learning_rate": 0.00038333333333333334,
204
+ "loss": 1.0492,
205
+ "step": 2800
206
+ },
207
+ {
208
+ "epoch": 0.725,
209
+ "grad_norm": 0.2599722743034363,
210
+ "learning_rate": 0.00037916666666666665,
211
+ "loss": 1.0639,
212
+ "step": 2900
213
+ },
214
+ {
215
+ "epoch": 0.75,
216
+ "grad_norm": 0.2554958462715149,
217
+ "learning_rate": 0.000375,
218
+ "loss": 1.0592,
219
+ "step": 3000
220
+ },
221
+ {
222
+ "epoch": 0.775,
223
+ "grad_norm": 0.262107789516449,
224
+ "learning_rate": 0.00037083333333333337,
225
+ "loss": 1.0458,
226
+ "step": 3100
227
+ },
228
+ {
229
+ "epoch": 0.8,
230
+ "grad_norm": 0.23872502148151398,
231
+ "learning_rate": 0.00036666666666666667,
232
+ "loss": 1.0479,
233
+ "step": 3200
234
+ },
235
+ {
236
+ "epoch": 0.825,
237
+ "grad_norm": 0.2865801155567169,
238
+ "learning_rate": 0.0003625,
239
+ "loss": 1.0421,
240
+ "step": 3300
241
+ },
242
+ {
243
+ "epoch": 0.85,
244
+ "grad_norm": 0.2661890685558319,
245
+ "learning_rate": 0.00035833333333333333,
246
+ "loss": 1.0653,
247
+ "step": 3400
248
+ },
249
+ {
250
+ "epoch": 0.875,
251
+ "grad_norm": 0.25706493854522705,
252
+ "learning_rate": 0.0003541666666666667,
253
+ "loss": 1.057,
254
+ "step": 3500
255
+ },
256
+ {
257
+ "epoch": 0.9,
258
+ "grad_norm": 0.25889962911605835,
259
+ "learning_rate": 0.00035,
260
+ "loss": 1.0435,
261
+ "step": 3600
262
+ },
263
+ {
264
+ "epoch": 0.925,
265
+ "grad_norm": 0.28601542115211487,
266
+ "learning_rate": 0.00034583333333333335,
267
+ "loss": 1.0564,
268
+ "step": 3700
269
+ },
270
+ {
271
+ "epoch": 0.95,
272
+ "grad_norm": 0.2556051015853882,
273
+ "learning_rate": 0.00034166666666666666,
274
+ "loss": 1.0354,
275
+ "step": 3800
276
+ },
277
+ {
278
+ "epoch": 0.975,
279
+ "grad_norm": 0.259920597076416,
280
+ "learning_rate": 0.0003375,
281
+ "loss": 1.0617,
282
+ "step": 3900
283
+ },
284
+ {
285
+ "epoch": 1.0,
286
+ "grad_norm": 0.26773035526275635,
287
+ "learning_rate": 0.0003333333333333333,
288
+ "loss": 1.0162,
289
+ "step": 4000
290
+ },
291
+ {
292
+ "epoch": 1.0,
293
+ "eval_loss": 1.041967749595642,
294
+ "eval_runtime": 70.7784,
295
+ "eval_samples_per_second": 56.514,
296
+ "eval_steps_per_second": 14.129,
297
+ "step": 4000
298
+ },
299
+ {
300
+ "epoch": 1.025,
301
+ "grad_norm": 0.27995696663856506,
302
+ "learning_rate": 0.0003291666666666667,
303
+ "loss": 1.0294,
304
+ "step": 4100
305
+ },
306
+ {
307
+ "epoch": 1.05,
308
+ "grad_norm": 0.26720207929611206,
309
+ "learning_rate": 0.00032500000000000004,
310
+ "loss": 1.0201,
311
+ "step": 4200
312
+ },
313
+ {
314
+ "epoch": 1.075,
315
+ "grad_norm": 0.26933032274246216,
316
+ "learning_rate": 0.00032083333333333334,
317
+ "loss": 1.0337,
318
+ "step": 4300
319
+ },
320
+ {
321
+ "epoch": 1.1,
322
+ "grad_norm": 0.2675634026527405,
323
+ "learning_rate": 0.00031666666666666665,
324
+ "loss": 1.0204,
325
+ "step": 4400
326
+ },
327
+ {
328
+ "epoch": 1.125,
329
+ "grad_norm": 0.29779279232025146,
330
+ "learning_rate": 0.0003125,
331
+ "loss": 1.0116,
332
+ "step": 4500
333
+ },
334
+ {
335
+ "epoch": 1.15,
336
+ "grad_norm": 0.2576355040073395,
337
+ "learning_rate": 0.00030833333333333337,
338
+ "loss": 1.0422,
339
+ "step": 4600
340
+ },
341
+ {
342
+ "epoch": 1.175,
343
+ "grad_norm": 0.26360246539115906,
344
+ "learning_rate": 0.00030416666666666667,
345
+ "loss": 1.0304,
346
+ "step": 4700
347
+ },
348
+ {
349
+ "epoch": 1.2,
350
+ "grad_norm": 0.2623592019081116,
351
+ "learning_rate": 0.0003,
352
+ "loss": 1.0344,
353
+ "step": 4800
354
+ },
355
+ {
356
+ "epoch": 1.225,
357
+ "grad_norm": 0.2560625970363617,
358
+ "learning_rate": 0.00029583333333333333,
359
+ "loss": 1.0323,
360
+ "step": 4900
361
+ },
362
+ {
363
+ "epoch": 1.25,
364
+ "grad_norm": 0.27826786041259766,
365
+ "learning_rate": 0.0002916666666666667,
366
+ "loss": 1.0147,
367
+ "step": 5000
368
+ },
369
+ {
370
+ "epoch": 1.275,
371
+ "grad_norm": 0.26778700947761536,
372
+ "learning_rate": 0.0002875,
373
+ "loss": 1.0212,
374
+ "step": 5100
375
+ },
376
+ {
377
+ "epoch": 1.3,
378
+ "grad_norm": 0.2655790150165558,
379
+ "learning_rate": 0.00028333333333333335,
380
+ "loss": 1.0429,
381
+ "step": 5200
382
+ },
383
+ {
384
+ "epoch": 1.325,
385
+ "grad_norm": 0.23913314938545227,
386
+ "learning_rate": 0.00027916666666666666,
387
+ "loss": 1.0093,
388
+ "step": 5300
389
+ },
390
+ {
391
+ "epoch": 1.35,
392
+ "grad_norm": 0.25580066442489624,
393
+ "learning_rate": 0.000275,
394
+ "loss": 1.0157,
395
+ "step": 5400
396
+ },
397
+ {
398
+ "epoch": 1.375,
399
+ "grad_norm": 0.3255338966846466,
400
+ "learning_rate": 0.0002708333333333333,
401
+ "loss": 1.0291,
402
+ "step": 5500
403
+ },
404
+ {
405
+ "epoch": 1.4,
406
+ "grad_norm": 0.2690030634403229,
407
+ "learning_rate": 0.0002666666666666667,
408
+ "loss": 1.0428,
409
+ "step": 5600
410
+ },
411
+ {
412
+ "epoch": 1.425,
413
+ "grad_norm": 0.2967054843902588,
414
+ "learning_rate": 0.00026250000000000004,
415
+ "loss": 1.0077,
416
+ "step": 5700
417
+ },
418
+ {
419
+ "epoch": 1.45,
420
+ "grad_norm": 0.26981931924819946,
421
+ "learning_rate": 0.00025833333333333334,
422
+ "loss": 1.022,
423
+ "step": 5800
424
+ },
425
+ {
426
+ "epoch": 1.475,
427
+ "grad_norm": 0.29188498854637146,
428
+ "learning_rate": 0.00025416666666666665,
429
+ "loss": 1.0317,
430
+ "step": 5900
431
+ },
432
+ {
433
+ "epoch": 1.5,
434
+ "grad_norm": 0.26391416788101196,
435
+ "learning_rate": 0.00025,
436
+ "loss": 1.0311,
437
+ "step": 6000
438
+ },
439
+ {
440
+ "epoch": 1.525,
441
+ "grad_norm": 0.2949013113975525,
442
+ "learning_rate": 0.0002458333333333333,
443
+ "loss": 0.998,
444
+ "step": 6100
445
+ },
446
+ {
447
+ "epoch": 1.55,
448
+ "grad_norm": 0.25229978561401367,
449
+ "learning_rate": 0.00024166666666666667,
450
+ "loss": 1.0241,
451
+ "step": 6200
452
+ },
453
+ {
454
+ "epoch": 1.575,
455
+ "grad_norm": 0.2736811637878418,
456
+ "learning_rate": 0.0002375,
457
+ "loss": 1.0214,
458
+ "step": 6300
459
+ },
460
+ {
461
+ "epoch": 1.6,
462
+ "grad_norm": 0.31093525886535645,
463
+ "learning_rate": 0.00023333333333333333,
464
+ "loss": 0.9709,
465
+ "step": 6400
466
+ },
467
+ {
468
+ "epoch": 1.625,
469
+ "grad_norm": 0.32644134759902954,
470
+ "learning_rate": 0.00022916666666666666,
471
+ "loss": 1.003,
472
+ "step": 6500
473
+ },
474
+ {
475
+ "epoch": 1.65,
476
+ "grad_norm": 0.29749053716659546,
477
+ "learning_rate": 0.00022500000000000002,
478
+ "loss": 0.9985,
479
+ "step": 6600
480
+ },
481
+ {
482
+ "epoch": 1.675,
483
+ "grad_norm": 0.27901262044906616,
484
+ "learning_rate": 0.00022083333333333333,
485
+ "loss": 1.0096,
486
+ "step": 6700
487
+ },
488
+ {
489
+ "epoch": 1.7,
490
+ "grad_norm": 0.32841789722442627,
491
+ "learning_rate": 0.00021666666666666668,
492
+ "loss": 1.0007,
493
+ "step": 6800
494
+ },
495
+ {
496
+ "epoch": 1.725,
497
+ "grad_norm": 0.30320826172828674,
498
+ "learning_rate": 0.0002125,
499
+ "loss": 1.0326,
500
+ "step": 6900
501
+ },
502
+ {
503
+ "epoch": 1.75,
504
+ "grad_norm": 0.2965095639228821,
505
+ "learning_rate": 0.00020833333333333335,
506
+ "loss": 1.0028,
507
+ "step": 7000
508
+ },
509
+ {
510
+ "epoch": 1.775,
511
+ "grad_norm": 0.31121572852134705,
512
+ "learning_rate": 0.00020416666666666668,
513
+ "loss": 0.9839,
514
+ "step": 7100
515
+ },
516
+ {
517
+ "epoch": 1.8,
518
+ "grad_norm": 0.2947477698326111,
519
+ "learning_rate": 0.0002,
520
+ "loss": 0.9841,
521
+ "step": 7200
522
+ },
523
+ {
524
+ "epoch": 1.825,
525
+ "grad_norm": 0.2830908000469208,
526
+ "learning_rate": 0.00019583333333333334,
527
+ "loss": 1.0089,
528
+ "step": 7300
529
+ },
530
+ {
531
+ "epoch": 1.85,
532
+ "grad_norm": 0.29144686460494995,
533
+ "learning_rate": 0.00019166666666666667,
534
+ "loss": 1.0038,
535
+ "step": 7400
536
+ },
537
+ {
538
+ "epoch": 1.875,
539
+ "grad_norm": 0.2925328016281128,
540
+ "learning_rate": 0.0001875,
541
+ "loss": 1.003,
542
+ "step": 7500
543
+ },
544
+ {
545
+ "epoch": 1.9,
546
+ "grad_norm": 0.3474633991718292,
547
+ "learning_rate": 0.00018333333333333334,
548
+ "loss": 1.0265,
549
+ "step": 7600
550
+ },
551
+ {
552
+ "epoch": 1.925,
553
+ "grad_norm": 0.2939680814743042,
554
+ "learning_rate": 0.00017916666666666667,
555
+ "loss": 1.0145,
556
+ "step": 7700
557
+ },
558
+ {
559
+ "epoch": 1.95,
560
+ "grad_norm": 0.2775793969631195,
561
+ "learning_rate": 0.000175,
562
+ "loss": 0.9977,
563
+ "step": 7800
564
+ },
565
+ {
566
+ "epoch": 1.975,
567
+ "grad_norm": 0.3091006577014923,
568
+ "learning_rate": 0.00017083333333333333,
569
+ "loss": 1.0255,
570
+ "step": 7900
571
+ },
572
+ {
573
+ "epoch": 2.0,
574
+ "grad_norm": 0.32153698801994324,
575
+ "learning_rate": 0.00016666666666666666,
576
+ "loss": 1.0262,
577
+ "step": 8000
578
+ },
579
+ {
580
+ "epoch": 2.0,
581
+ "eval_loss": 1.0134142637252808,
582
+ "eval_runtime": 71.1474,
583
+ "eval_samples_per_second": 56.221,
584
+ "eval_steps_per_second": 14.055,
585
+ "step": 8000
586
+ },
587
+ {
588
+ "epoch": 2.025,
589
+ "grad_norm": 0.31311318278312683,
590
+ "learning_rate": 0.00016250000000000002,
591
+ "loss": 1.0097,
592
+ "step": 8100
593
+ },
594
+ {
595
+ "epoch": 2.05,
596
+ "grad_norm": 0.308938205242157,
597
+ "learning_rate": 0.00015833333333333332,
598
+ "loss": 0.9912,
599
+ "step": 8200
600
+ },
601
+ {
602
+ "epoch": 2.075,
603
+ "grad_norm": 0.29837608337402344,
604
+ "learning_rate": 0.00015416666666666668,
605
+ "loss": 0.9945,
606
+ "step": 8300
607
+ },
608
+ {
609
+ "epoch": 2.1,
610
+ "grad_norm": 0.29206210374832153,
611
+ "learning_rate": 0.00015,
612
+ "loss": 0.9608,
613
+ "step": 8400
614
+ },
615
+ {
616
+ "epoch": 2.125,
617
+ "grad_norm": 0.29734155535697937,
618
+ "learning_rate": 0.00014583333333333335,
619
+ "loss": 1.0005,
620
+ "step": 8500
621
+ },
622
+ {
623
+ "epoch": 2.15,
624
+ "grad_norm": 0.31197240948677063,
625
+ "learning_rate": 0.00014166666666666668,
626
+ "loss": 0.9936,
627
+ "step": 8600
628
+ },
629
+ {
630
+ "epoch": 2.175,
631
+ "grad_norm": 0.3193836808204651,
632
+ "learning_rate": 0.0001375,
633
+ "loss": 1.0125,
634
+ "step": 8700
635
+ },
636
+ {
637
+ "epoch": 2.2,
638
+ "grad_norm": 0.29876908659935,
639
+ "learning_rate": 0.00013333333333333334,
640
+ "loss": 1.0084,
641
+ "step": 8800
642
+ },
643
+ {
644
+ "epoch": 2.225,
645
+ "grad_norm": 0.32974332571029663,
646
+ "learning_rate": 0.00012916666666666667,
647
+ "loss": 0.9983,
648
+ "step": 8900
649
+ },
650
+ {
651
+ "epoch": 2.25,
652
+ "grad_norm": 0.2792109549045563,
653
+ "learning_rate": 0.000125,
654
+ "loss": 0.9892,
655
+ "step": 9000
656
+ },
657
+ {
658
+ "epoch": 2.275,
659
+ "grad_norm": 0.30666106939315796,
660
+ "learning_rate": 0.00012083333333333333,
661
+ "loss": 0.9899,
662
+ "step": 9100
663
+ },
664
+ {
665
+ "epoch": 2.3,
666
+ "grad_norm": 0.32148030400276184,
667
+ "learning_rate": 0.00011666666666666667,
668
+ "loss": 0.9903,
669
+ "step": 9200
670
+ },
671
+ {
672
+ "epoch": 2.325,
673
+ "grad_norm": 0.3192428648471832,
674
+ "learning_rate": 0.00011250000000000001,
675
+ "loss": 0.9844,
676
+ "step": 9300
677
+ },
678
+ {
679
+ "epoch": 2.35,
680
+ "grad_norm": 0.31449925899505615,
681
+ "learning_rate": 0.00010833333333333334,
682
+ "loss": 0.9968,
683
+ "step": 9400
684
+ },
685
+ {
686
+ "epoch": 2.375,
687
+ "grad_norm": 0.2781430780887604,
688
+ "learning_rate": 0.00010416666666666667,
689
+ "loss": 0.971,
690
+ "step": 9500
691
+ },
692
+ {
693
+ "epoch": 2.4,
694
+ "grad_norm": 0.352714866399765,
695
+ "learning_rate": 0.0001,
696
+ "loss": 0.9805,
697
+ "step": 9600
698
+ },
699
+ {
700
+ "epoch": 2.425,
701
+ "grad_norm": 0.29257628321647644,
702
+ "learning_rate": 9.583333333333334e-05,
703
+ "loss": 0.9829,
704
+ "step": 9700
705
+ },
706
+ {
707
+ "epoch": 2.45,
708
+ "grad_norm": 0.31601646542549133,
709
+ "learning_rate": 9.166666666666667e-05,
710
+ "loss": 1.029,
711
+ "step": 9800
712
+ },
713
+ {
714
+ "epoch": 2.475,
715
+ "grad_norm": 0.3273641765117645,
716
+ "learning_rate": 8.75e-05,
717
+ "loss": 1.0122,
718
+ "step": 9900
719
+ },
720
+ {
721
+ "epoch": 2.5,
722
+ "grad_norm": 0.3294784128665924,
723
+ "learning_rate": 8.333333333333333e-05,
724
+ "loss": 0.9829,
725
+ "step": 10000
726
+ },
727
+ {
728
+ "epoch": 2.525,
729
+ "grad_norm": 0.33815255761146545,
730
+ "learning_rate": 7.916666666666666e-05,
731
+ "loss": 0.9808,
732
+ "step": 10100
733
+ },
734
+ {
735
+ "epoch": 2.55,
736
+ "grad_norm": 0.33642280101776123,
737
+ "learning_rate": 7.5e-05,
738
+ "loss": 0.9817,
739
+ "step": 10200
740
+ },
741
+ {
742
+ "epoch": 2.575,
743
+ "grad_norm": 0.30594727396965027,
744
+ "learning_rate": 7.083333333333334e-05,
745
+ "loss": 0.9935,
746
+ "step": 10300
747
+ },
748
+ {
749
+ "epoch": 2.6,
750
+ "grad_norm": 0.2828643023967743,
751
+ "learning_rate": 6.666666666666667e-05,
752
+ "loss": 0.9801,
753
+ "step": 10400
754
+ },
755
+ {
756
+ "epoch": 2.625,
757
+ "grad_norm": 0.30603161454200745,
758
+ "learning_rate": 6.25e-05,
759
+ "loss": 0.956,
760
+ "step": 10500
761
+ },
762
+ {
763
+ "epoch": 2.65,
764
+ "grad_norm": 0.33404436707496643,
765
+ "learning_rate": 5.833333333333333e-05,
766
+ "loss": 0.9764,
767
+ "step": 10600
768
+ },
769
+ {
770
+ "epoch": 2.675,
771
+ "grad_norm": 0.31933677196502686,
772
+ "learning_rate": 5.416666666666667e-05,
773
+ "loss": 0.9925,
774
+ "step": 10700
775
+ },
776
+ {
777
+ "epoch": 2.7,
778
+ "grad_norm": 0.3033044934272766,
779
+ "learning_rate": 5e-05,
780
+ "loss": 1.0186,
781
+ "step": 10800
782
+ },
783
+ {
784
+ "epoch": 2.725,
785
+ "grad_norm": 0.3226676881313324,
786
+ "learning_rate": 4.5833333333333334e-05,
787
+ "loss": 0.9668,
788
+ "step": 10900
789
+ },
790
+ {
791
+ "epoch": 2.75,
792
+ "grad_norm": 0.3162941336631775,
793
+ "learning_rate": 4.1666666666666665e-05,
794
+ "loss": 0.9896,
795
+ "step": 11000
796
+ },
797
+ {
798
+ "epoch": 2.775,
799
+ "grad_norm": 0.26616427302360535,
800
+ "learning_rate": 3.75e-05,
801
+ "loss": 0.9534,
802
+ "step": 11100
803
+ },
804
+ {
805
+ "epoch": 2.8,
806
+ "grad_norm": 0.3296871781349182,
807
+ "learning_rate": 3.3333333333333335e-05,
808
+ "loss": 0.9515,
809
+ "step": 11200
810
+ },
811
+ {
812
+ "epoch": 2.825,
813
+ "grad_norm": 0.33690381050109863,
814
+ "learning_rate": 2.9166666666666666e-05,
815
+ "loss": 0.9941,
816
+ "step": 11300
817
+ },
818
+ {
819
+ "epoch": 2.85,
820
+ "grad_norm": 0.3230708837509155,
821
+ "learning_rate": 2.5e-05,
822
+ "loss": 1.0061,
823
+ "step": 11400
824
+ },
825
+ {
826
+ "epoch": 2.875,
827
+ "grad_norm": 0.30407923460006714,
828
+ "learning_rate": 2.0833333333333333e-05,
829
+ "loss": 1.0121,
830
+ "step": 11500
831
+ }
832
+ ],
833
+ "logging_steps": 100,
834
+ "max_steps": 12000,
835
+ "num_input_tokens_seen": 0,
836
+ "num_train_epochs": 3,
837
+ "save_steps": 500,
838
+ "stateful_callbacks": {
839
+ "TrainerControl": {
840
+ "args": {
841
+ "should_epoch_stop": false,
842
+ "should_evaluate": false,
843
+ "should_log": false,
844
+ "should_save": true,
845
+ "should_training_stop": false
846
+ },
847
+ "attributes": {}
848
+ }
849
+ },
850
+ "total_flos": 1.5138055913472e+16,
851
+ "train_batch_size": 4,
852
+ "trial_name": null,
853
+ "trial_params": null
854
+ }
checkpoint-11500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4a15d761e2a319ab5a1242d68e02509d0416bef1b2e9f394a75f923744fe76a
3
+ size 5240
checkpoint-12000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: HuggingFaceTB/SmolLM2-135M
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-12000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceTB/SmolLM2-135M",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-12000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05385138e4a73fe2f6d0e135631ba499d2670c47ad54d702182a1b7aa07a74e1
3
+ size 3702168
checkpoint-12000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50ae5e98dce254af0ddf6f067d850d3d1023f24adeb1ce72ad987ee5513ed860
3
+ size 7473658
checkpoint-12000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f060db117449f0f7b1a99b6bbbaa38ccaf51382c5b2ede831249f6e57ab9947
3
+ size 14244
checkpoint-12000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:951bb8d7d83c437589808181dd6a52fab98f8e3d2d14bd05d5bc15ebdc783270
3
+ size 1064
checkpoint-12000/trainer_state.json ADDED
@@ -0,0 +1,889 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 12000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.025,
13
+ "grad_norm": 0.2082100212574005,
14
+ "learning_rate": 0.0004958333333333334,
15
+ "loss": 1.3502,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "grad_norm": 0.1778642237186432,
21
+ "learning_rate": 0.0004916666666666666,
22
+ "loss": 1.1649,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 0.075,
27
+ "grad_norm": 0.2463778257369995,
28
+ "learning_rate": 0.0004875,
29
+ "loss": 1.1395,
30
+ "step": 300
31
+ },
32
+ {
33
+ "epoch": 0.1,
34
+ "grad_norm": 0.20819446444511414,
35
+ "learning_rate": 0.00048333333333333334,
36
+ "loss": 1.1056,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 0.125,
41
+ "grad_norm": 0.23243966698646545,
42
+ "learning_rate": 0.0004791666666666667,
43
+ "loss": 1.1329,
44
+ "step": 500
45
+ },
46
+ {
47
+ "epoch": 0.15,
48
+ "grad_norm": 0.19812804460525513,
49
+ "learning_rate": 0.000475,
50
+ "loss": 1.1169,
51
+ "step": 600
52
+ },
53
+ {
54
+ "epoch": 0.175,
55
+ "grad_norm": 0.2258671671152115,
56
+ "learning_rate": 0.00047083333333333336,
57
+ "loss": 1.1318,
58
+ "step": 700
59
+ },
60
+ {
61
+ "epoch": 0.2,
62
+ "grad_norm": 0.20714746415615082,
63
+ "learning_rate": 0.00046666666666666666,
64
+ "loss": 1.114,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 0.225,
69
+ "grad_norm": 0.22002336382865906,
70
+ "learning_rate": 0.0004625,
71
+ "loss": 1.1269,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 0.25,
76
+ "grad_norm": 0.2159491330385208,
77
+ "learning_rate": 0.0004583333333333333,
78
+ "loss": 1.0694,
79
+ "step": 1000
80
+ },
81
+ {
82
+ "epoch": 0.275,
83
+ "grad_norm": 0.20638039708137512,
84
+ "learning_rate": 0.0004541666666666667,
85
+ "loss": 1.0929,
86
+ "step": 1100
87
+ },
88
+ {
89
+ "epoch": 0.3,
90
+ "grad_norm": 0.2234920710325241,
91
+ "learning_rate": 0.00045000000000000004,
92
+ "loss": 1.0903,
93
+ "step": 1200
94
+ },
95
+ {
96
+ "epoch": 0.325,
97
+ "grad_norm": 0.23063984513282776,
98
+ "learning_rate": 0.00044583333333333335,
99
+ "loss": 1.095,
100
+ "step": 1300
101
+ },
102
+ {
103
+ "epoch": 0.35,
104
+ "grad_norm": 0.221044659614563,
105
+ "learning_rate": 0.00044166666666666665,
106
+ "loss": 1.0859,
107
+ "step": 1400
108
+ },
109
+ {
110
+ "epoch": 0.375,
111
+ "grad_norm": 0.19685755670070648,
112
+ "learning_rate": 0.0004375,
113
+ "loss": 1.0643,
114
+ "step": 1500
115
+ },
116
+ {
117
+ "epoch": 0.4,
118
+ "grad_norm": 0.2428029328584671,
119
+ "learning_rate": 0.00043333333333333337,
120
+ "loss": 1.0715,
121
+ "step": 1600
122
+ },
123
+ {
124
+ "epoch": 0.425,
125
+ "grad_norm": 0.21401169896125793,
126
+ "learning_rate": 0.00042916666666666667,
127
+ "loss": 1.0821,
128
+ "step": 1700
129
+ },
130
+ {
131
+ "epoch": 0.45,
132
+ "grad_norm": 0.23752962052822113,
133
+ "learning_rate": 0.000425,
134
+ "loss": 1.0936,
135
+ "step": 1800
136
+ },
137
+ {
138
+ "epoch": 0.475,
139
+ "grad_norm": 0.23333564400672913,
140
+ "learning_rate": 0.00042083333333333333,
141
+ "loss": 1.0842,
142
+ "step": 1900
143
+ },
144
+ {
145
+ "epoch": 0.5,
146
+ "grad_norm": 0.2038385421037674,
147
+ "learning_rate": 0.0004166666666666667,
148
+ "loss": 1.0831,
149
+ "step": 2000
150
+ },
151
+ {
152
+ "epoch": 0.525,
153
+ "grad_norm": 0.24392388761043549,
154
+ "learning_rate": 0.0004125,
155
+ "loss": 1.069,
156
+ "step": 2100
157
+ },
158
+ {
159
+ "epoch": 0.55,
160
+ "grad_norm": 0.2810049057006836,
161
+ "learning_rate": 0.00040833333333333336,
162
+ "loss": 1.0649,
163
+ "step": 2200
164
+ },
165
+ {
166
+ "epoch": 0.575,
167
+ "grad_norm": 0.24431484937667847,
168
+ "learning_rate": 0.00040416666666666666,
169
+ "loss": 1.0955,
170
+ "step": 2300
171
+ },
172
+ {
173
+ "epoch": 0.6,
174
+ "grad_norm": 0.2268693745136261,
175
+ "learning_rate": 0.0004,
176
+ "loss": 1.0639,
177
+ "step": 2400
178
+ },
179
+ {
180
+ "epoch": 0.625,
181
+ "grad_norm": 0.22379685938358307,
182
+ "learning_rate": 0.0003958333333333333,
183
+ "loss": 1.0864,
184
+ "step": 2500
185
+ },
186
+ {
187
+ "epoch": 0.65,
188
+ "grad_norm": 0.22857442498207092,
189
+ "learning_rate": 0.0003916666666666667,
190
+ "loss": 1.0895,
191
+ "step": 2600
192
+ },
193
+ {
194
+ "epoch": 0.675,
195
+ "grad_norm": 0.22649641335010529,
196
+ "learning_rate": 0.00038750000000000004,
197
+ "loss": 1.0656,
198
+ "step": 2700
199
+ },
200
+ {
201
+ "epoch": 0.7,
202
+ "grad_norm": 0.2611943185329437,
203
+ "learning_rate": 0.00038333333333333334,
204
+ "loss": 1.0492,
205
+ "step": 2800
206
+ },
207
+ {
208
+ "epoch": 0.725,
209
+ "grad_norm": 0.2599722743034363,
210
+ "learning_rate": 0.00037916666666666665,
211
+ "loss": 1.0639,
212
+ "step": 2900
213
+ },
214
+ {
215
+ "epoch": 0.75,
216
+ "grad_norm": 0.2554958462715149,
217
+ "learning_rate": 0.000375,
218
+ "loss": 1.0592,
219
+ "step": 3000
220
+ },
221
+ {
222
+ "epoch": 0.775,
223
+ "grad_norm": 0.262107789516449,
224
+ "learning_rate": 0.00037083333333333337,
225
+ "loss": 1.0458,
226
+ "step": 3100
227
+ },
228
+ {
229
+ "epoch": 0.8,
230
+ "grad_norm": 0.23872502148151398,
231
+ "learning_rate": 0.00036666666666666667,
232
+ "loss": 1.0479,
233
+ "step": 3200
234
+ },
235
+ {
236
+ "epoch": 0.825,
237
+ "grad_norm": 0.2865801155567169,
238
+ "learning_rate": 0.0003625,
239
+ "loss": 1.0421,
240
+ "step": 3300
241
+ },
242
+ {
243
+ "epoch": 0.85,
244
+ "grad_norm": 0.2661890685558319,
245
+ "learning_rate": 0.00035833333333333333,
246
+ "loss": 1.0653,
247
+ "step": 3400
248
+ },
249
+ {
250
+ "epoch": 0.875,
251
+ "grad_norm": 0.25706493854522705,
252
+ "learning_rate": 0.0003541666666666667,
253
+ "loss": 1.057,
254
+ "step": 3500
255
+ },
256
+ {
257
+ "epoch": 0.9,
258
+ "grad_norm": 0.25889962911605835,
259
+ "learning_rate": 0.00035,
260
+ "loss": 1.0435,
261
+ "step": 3600
262
+ },
263
+ {
264
+ "epoch": 0.925,
265
+ "grad_norm": 0.28601542115211487,
266
+ "learning_rate": 0.00034583333333333335,
267
+ "loss": 1.0564,
268
+ "step": 3700
269
+ },
270
+ {
271
+ "epoch": 0.95,
272
+ "grad_norm": 0.2556051015853882,
273
+ "learning_rate": 0.00034166666666666666,
274
+ "loss": 1.0354,
275
+ "step": 3800
276
+ },
277
+ {
278
+ "epoch": 0.975,
279
+ "grad_norm": 0.259920597076416,
280
+ "learning_rate": 0.0003375,
281
+ "loss": 1.0617,
282
+ "step": 3900
283
+ },
284
+ {
285
+ "epoch": 1.0,
286
+ "grad_norm": 0.26773035526275635,
287
+ "learning_rate": 0.0003333333333333333,
288
+ "loss": 1.0162,
289
+ "step": 4000
290
+ },
291
+ {
292
+ "epoch": 1.0,
293
+ "eval_loss": 1.041967749595642,
294
+ "eval_runtime": 70.7784,
295
+ "eval_samples_per_second": 56.514,
296
+ "eval_steps_per_second": 14.129,
297
+ "step": 4000
298
+ },
299
+ {
300
+ "epoch": 1.025,
301
+ "grad_norm": 0.27995696663856506,
302
+ "learning_rate": 0.0003291666666666667,
303
+ "loss": 1.0294,
304
+ "step": 4100
305
+ },
306
+ {
307
+ "epoch": 1.05,
308
+ "grad_norm": 0.26720207929611206,
309
+ "learning_rate": 0.00032500000000000004,
310
+ "loss": 1.0201,
311
+ "step": 4200
312
+ },
313
+ {
314
+ "epoch": 1.075,
315
+ "grad_norm": 0.26933032274246216,
316
+ "learning_rate": 0.00032083333333333334,
317
+ "loss": 1.0337,
318
+ "step": 4300
319
+ },
320
+ {
321
+ "epoch": 1.1,
322
+ "grad_norm": 0.2675634026527405,
323
+ "learning_rate": 0.00031666666666666665,
324
+ "loss": 1.0204,
325
+ "step": 4400
326
+ },
327
+ {
328
+ "epoch": 1.125,
329
+ "grad_norm": 0.29779279232025146,
330
+ "learning_rate": 0.0003125,
331
+ "loss": 1.0116,
332
+ "step": 4500
333
+ },
334
+ {
335
+ "epoch": 1.15,
336
+ "grad_norm": 0.2576355040073395,
337
+ "learning_rate": 0.00030833333333333337,
338
+ "loss": 1.0422,
339
+ "step": 4600
340
+ },
341
+ {
342
+ "epoch": 1.175,
343
+ "grad_norm": 0.26360246539115906,
344
+ "learning_rate": 0.00030416666666666667,
345
+ "loss": 1.0304,
346
+ "step": 4700
347
+ },
348
+ {
349
+ "epoch": 1.2,
350
+ "grad_norm": 0.2623592019081116,
351
+ "learning_rate": 0.0003,
352
+ "loss": 1.0344,
353
+ "step": 4800
354
+ },
355
+ {
356
+ "epoch": 1.225,
357
+ "grad_norm": 0.2560625970363617,
358
+ "learning_rate": 0.00029583333333333333,
359
+ "loss": 1.0323,
360
+ "step": 4900
361
+ },
362
+ {
363
+ "epoch": 1.25,
364
+ "grad_norm": 0.27826786041259766,
365
+ "learning_rate": 0.0002916666666666667,
366
+ "loss": 1.0147,
367
+ "step": 5000
368
+ },
369
+ {
370
+ "epoch": 1.275,
371
+ "grad_norm": 0.26778700947761536,
372
+ "learning_rate": 0.0002875,
373
+ "loss": 1.0212,
374
+ "step": 5100
375
+ },
376
+ {
377
+ "epoch": 1.3,
378
+ "grad_norm": 0.2655790150165558,
379
+ "learning_rate": 0.00028333333333333335,
380
+ "loss": 1.0429,
381
+ "step": 5200
382
+ },
383
+ {
384
+ "epoch": 1.325,
385
+ "grad_norm": 0.23913314938545227,
386
+ "learning_rate": 0.00027916666666666666,
387
+ "loss": 1.0093,
388
+ "step": 5300
389
+ },
390
+ {
391
+ "epoch": 1.35,
392
+ "grad_norm": 0.25580066442489624,
393
+ "learning_rate": 0.000275,
394
+ "loss": 1.0157,
395
+ "step": 5400
396
+ },
397
+ {
398
+ "epoch": 1.375,
399
+ "grad_norm": 0.3255338966846466,
400
+ "learning_rate": 0.0002708333333333333,
401
+ "loss": 1.0291,
402
+ "step": 5500
403
+ },
404
+ {
405
+ "epoch": 1.4,
406
+ "grad_norm": 0.2690030634403229,
407
+ "learning_rate": 0.0002666666666666667,
408
+ "loss": 1.0428,
409
+ "step": 5600
410
+ },
411
+ {
412
+ "epoch": 1.425,
413
+ "grad_norm": 0.2967054843902588,
414
+ "learning_rate": 0.00026250000000000004,
415
+ "loss": 1.0077,
416
+ "step": 5700
417
+ },
418
+ {
419
+ "epoch": 1.45,
420
+ "grad_norm": 0.26981931924819946,
421
+ "learning_rate": 0.00025833333333333334,
422
+ "loss": 1.022,
423
+ "step": 5800
424
+ },
425
+ {
426
+ "epoch": 1.475,
427
+ "grad_norm": 0.29188498854637146,
428
+ "learning_rate": 0.00025416666666666665,
429
+ "loss": 1.0317,
430
+ "step": 5900
431
+ },
432
+ {
433
+ "epoch": 1.5,
434
+ "grad_norm": 0.26391416788101196,
435
+ "learning_rate": 0.00025,
436
+ "loss": 1.0311,
437
+ "step": 6000
438
+ },
439
+ {
440
+ "epoch": 1.525,
441
+ "grad_norm": 0.2949013113975525,
442
+ "learning_rate": 0.0002458333333333333,
443
+ "loss": 0.998,
444
+ "step": 6100
445
+ },
446
+ {
447
+ "epoch": 1.55,
448
+ "grad_norm": 0.25229978561401367,
449
+ "learning_rate": 0.00024166666666666667,
450
+ "loss": 1.0241,
451
+ "step": 6200
452
+ },
453
+ {
454
+ "epoch": 1.575,
455
+ "grad_norm": 0.2736811637878418,
456
+ "learning_rate": 0.0002375,
457
+ "loss": 1.0214,
458
+ "step": 6300
459
+ },
460
+ {
461
+ "epoch": 1.6,
462
+ "grad_norm": 0.31093525886535645,
463
+ "learning_rate": 0.00023333333333333333,
464
+ "loss": 0.9709,
465
+ "step": 6400
466
+ },
467
+ {
468
+ "epoch": 1.625,
469
+ "grad_norm": 0.32644134759902954,
470
+ "learning_rate": 0.00022916666666666666,
471
+ "loss": 1.003,
472
+ "step": 6500
473
+ },
474
+ {
475
+ "epoch": 1.65,
476
+ "grad_norm": 0.29749053716659546,
477
+ "learning_rate": 0.00022500000000000002,
478
+ "loss": 0.9985,
479
+ "step": 6600
480
+ },
481
+ {
482
+ "epoch": 1.675,
483
+ "grad_norm": 0.27901262044906616,
484
+ "learning_rate": 0.00022083333333333333,
485
+ "loss": 1.0096,
486
+ "step": 6700
487
+ },
488
+ {
489
+ "epoch": 1.7,
490
+ "grad_norm": 0.32841789722442627,
491
+ "learning_rate": 0.00021666666666666668,
492
+ "loss": 1.0007,
493
+ "step": 6800
494
+ },
495
+ {
496
+ "epoch": 1.725,
497
+ "grad_norm": 0.30320826172828674,
498
+ "learning_rate": 0.0002125,
499
+ "loss": 1.0326,
500
+ "step": 6900
501
+ },
502
+ {
503
+ "epoch": 1.75,
504
+ "grad_norm": 0.2965095639228821,
505
+ "learning_rate": 0.00020833333333333335,
506
+ "loss": 1.0028,
507
+ "step": 7000
508
+ },
509
+ {
510
+ "epoch": 1.775,
511
+ "grad_norm": 0.31121572852134705,
512
+ "learning_rate": 0.00020416666666666668,
513
+ "loss": 0.9839,
514
+ "step": 7100
515
+ },
516
+ {
517
+ "epoch": 1.8,
518
+ "grad_norm": 0.2947477698326111,
519
+ "learning_rate": 0.0002,
520
+ "loss": 0.9841,
521
+ "step": 7200
522
+ },
523
+ {
524
+ "epoch": 1.825,
525
+ "grad_norm": 0.2830908000469208,
526
+ "learning_rate": 0.00019583333333333334,
527
+ "loss": 1.0089,
528
+ "step": 7300
529
+ },
530
+ {
531
+ "epoch": 1.85,
532
+ "grad_norm": 0.29144686460494995,
533
+ "learning_rate": 0.00019166666666666667,
534
+ "loss": 1.0038,
535
+ "step": 7400
536
+ },
537
+ {
538
+ "epoch": 1.875,
539
+ "grad_norm": 0.2925328016281128,
540
+ "learning_rate": 0.0001875,
541
+ "loss": 1.003,
542
+ "step": 7500
543
+ },
544
+ {
545
+ "epoch": 1.9,
546
+ "grad_norm": 0.3474633991718292,
547
+ "learning_rate": 0.00018333333333333334,
548
+ "loss": 1.0265,
549
+ "step": 7600
550
+ },
551
+ {
552
+ "epoch": 1.925,
553
+ "grad_norm": 0.2939680814743042,
554
+ "learning_rate": 0.00017916666666666667,
555
+ "loss": 1.0145,
556
+ "step": 7700
557
+ },
558
+ {
559
+ "epoch": 1.95,
560
+ "grad_norm": 0.2775793969631195,
561
+ "learning_rate": 0.000175,
562
+ "loss": 0.9977,
563
+ "step": 7800
564
+ },
565
+ {
566
+ "epoch": 1.975,
567
+ "grad_norm": 0.3091006577014923,
568
+ "learning_rate": 0.00017083333333333333,
569
+ "loss": 1.0255,
570
+ "step": 7900
571
+ },
572
+ {
573
+ "epoch": 2.0,
574
+ "grad_norm": 0.32153698801994324,
575
+ "learning_rate": 0.00016666666666666666,
576
+ "loss": 1.0262,
577
+ "step": 8000
578
+ },
579
+ {
580
+ "epoch": 2.0,
581
+ "eval_loss": 1.0134142637252808,
582
+ "eval_runtime": 71.1474,
583
+ "eval_samples_per_second": 56.221,
584
+ "eval_steps_per_second": 14.055,
585
+ "step": 8000
586
+ },
587
+ {
588
+ "epoch": 2.025,
589
+ "grad_norm": 0.31311318278312683,
590
+ "learning_rate": 0.00016250000000000002,
591
+ "loss": 1.0097,
592
+ "step": 8100
593
+ },
594
+ {
595
+ "epoch": 2.05,
596
+ "grad_norm": 0.308938205242157,
597
+ "learning_rate": 0.00015833333333333332,
598
+ "loss": 0.9912,
599
+ "step": 8200
600
+ },
601
+ {
602
+ "epoch": 2.075,
603
+ "grad_norm": 0.29837608337402344,
604
+ "learning_rate": 0.00015416666666666668,
605
+ "loss": 0.9945,
606
+ "step": 8300
607
+ },
608
+ {
609
+ "epoch": 2.1,
610
+ "grad_norm": 0.29206210374832153,
611
+ "learning_rate": 0.00015,
612
+ "loss": 0.9608,
613
+ "step": 8400
614
+ },
615
+ {
616
+ "epoch": 2.125,
617
+ "grad_norm": 0.29734155535697937,
618
+ "learning_rate": 0.00014583333333333335,
619
+ "loss": 1.0005,
620
+ "step": 8500
621
+ },
622
+ {
623
+ "epoch": 2.15,
624
+ "grad_norm": 0.31197240948677063,
625
+ "learning_rate": 0.00014166666666666668,
626
+ "loss": 0.9936,
627
+ "step": 8600
628
+ },
629
+ {
630
+ "epoch": 2.175,
631
+ "grad_norm": 0.3193836808204651,
632
+ "learning_rate": 0.0001375,
633
+ "loss": 1.0125,
634
+ "step": 8700
635
+ },
636
+ {
637
+ "epoch": 2.2,
638
+ "grad_norm": 0.29876908659935,
639
+ "learning_rate": 0.00013333333333333334,
640
+ "loss": 1.0084,
641
+ "step": 8800
642
+ },
643
+ {
644
+ "epoch": 2.225,
645
+ "grad_norm": 0.32974332571029663,
646
+ "learning_rate": 0.00012916666666666667,
647
+ "loss": 0.9983,
648
+ "step": 8900
649
+ },
650
+ {
651
+ "epoch": 2.25,
652
+ "grad_norm": 0.2792109549045563,
653
+ "learning_rate": 0.000125,
654
+ "loss": 0.9892,
655
+ "step": 9000
656
+ },
657
+ {
658
+ "epoch": 2.275,
659
+ "grad_norm": 0.30666106939315796,
660
+ "learning_rate": 0.00012083333333333333,
661
+ "loss": 0.9899,
662
+ "step": 9100
663
+ },
664
+ {
665
+ "epoch": 2.3,
666
+ "grad_norm": 0.32148030400276184,
667
+ "learning_rate": 0.00011666666666666667,
668
+ "loss": 0.9903,
669
+ "step": 9200
670
+ },
671
+ {
672
+ "epoch": 2.325,
673
+ "grad_norm": 0.3192428648471832,
674
+ "learning_rate": 0.00011250000000000001,
675
+ "loss": 0.9844,
676
+ "step": 9300
677
+ },
678
+ {
679
+ "epoch": 2.35,
680
+ "grad_norm": 0.31449925899505615,
681
+ "learning_rate": 0.00010833333333333334,
682
+ "loss": 0.9968,
683
+ "step": 9400
684
+ },
685
+ {
686
+ "epoch": 2.375,
687
+ "grad_norm": 0.2781430780887604,
688
+ "learning_rate": 0.00010416666666666667,
689
+ "loss": 0.971,
690
+ "step": 9500
691
+ },
692
+ {
693
+ "epoch": 2.4,
694
+ "grad_norm": 0.352714866399765,
695
+ "learning_rate": 0.0001,
696
+ "loss": 0.9805,
697
+ "step": 9600
698
+ },
699
+ {
700
+ "epoch": 2.425,
701
+ "grad_norm": 0.29257628321647644,
702
+ "learning_rate": 9.583333333333334e-05,
703
+ "loss": 0.9829,
704
+ "step": 9700
705
+ },
706
+ {
707
+ "epoch": 2.45,
708
+ "grad_norm": 0.31601646542549133,
709
+ "learning_rate": 9.166666666666667e-05,
710
+ "loss": 1.029,
711
+ "step": 9800
712
+ },
713
+ {
714
+ "epoch": 2.475,
715
+ "grad_norm": 0.3273641765117645,
716
+ "learning_rate": 8.75e-05,
717
+ "loss": 1.0122,
718
+ "step": 9900
719
+ },
720
+ {
721
+ "epoch": 2.5,
722
+ "grad_norm": 0.3294784128665924,
723
+ "learning_rate": 8.333333333333333e-05,
724
+ "loss": 0.9829,
725
+ "step": 10000
726
+ },
727
+ {
728
+ "epoch": 2.525,
729
+ "grad_norm": 0.33815255761146545,
730
+ "learning_rate": 7.916666666666666e-05,
731
+ "loss": 0.9808,
732
+ "step": 10100
733
+ },
734
+ {
735
+ "epoch": 2.55,
736
+ "grad_norm": 0.33642280101776123,
737
+ "learning_rate": 7.5e-05,
738
+ "loss": 0.9817,
739
+ "step": 10200
740
+ },
741
+ {
742
+ "epoch": 2.575,
743
+ "grad_norm": 0.30594727396965027,
744
+ "learning_rate": 7.083333333333334e-05,
745
+ "loss": 0.9935,
746
+ "step": 10300
747
+ },
748
+ {
749
+ "epoch": 2.6,
750
+ "grad_norm": 0.2828643023967743,
751
+ "learning_rate": 6.666666666666667e-05,
752
+ "loss": 0.9801,
753
+ "step": 10400
754
+ },
755
+ {
756
+ "epoch": 2.625,
757
+ "grad_norm": 0.30603161454200745,
758
+ "learning_rate": 6.25e-05,
759
+ "loss": 0.956,
760
+ "step": 10500
761
+ },
762
+ {
763
+ "epoch": 2.65,
764
+ "grad_norm": 0.33404436707496643,
765
+ "learning_rate": 5.833333333333333e-05,
766
+ "loss": 0.9764,
767
+ "step": 10600
768
+ },
769
+ {
770
+ "epoch": 2.675,
771
+ "grad_norm": 0.31933677196502686,
772
+ "learning_rate": 5.416666666666667e-05,
773
+ "loss": 0.9925,
774
+ "step": 10700
775
+ },
776
+ {
777
+ "epoch": 2.7,
778
+ "grad_norm": 0.3033044934272766,
779
+ "learning_rate": 5e-05,
780
+ "loss": 1.0186,
781
+ "step": 10800
782
+ },
783
+ {
784
+ "epoch": 2.725,
785
+ "grad_norm": 0.3226676881313324,
786
+ "learning_rate": 4.5833333333333334e-05,
787
+ "loss": 0.9668,
788
+ "step": 10900
789
+ },
790
+ {
791
+ "epoch": 2.75,
792
+ "grad_norm": 0.3162941336631775,
793
+ "learning_rate": 4.1666666666666665e-05,
794
+ "loss": 0.9896,
795
+ "step": 11000
796
+ },
797
+ {
798
+ "epoch": 2.775,
799
+ "grad_norm": 0.26616427302360535,
800
+ "learning_rate": 3.75e-05,
801
+ "loss": 0.9534,
802
+ "step": 11100
803
+ },
804
+ {
805
+ "epoch": 2.8,
806
+ "grad_norm": 0.3296871781349182,
807
+ "learning_rate": 3.3333333333333335e-05,
808
+ "loss": 0.9515,
809
+ "step": 11200
810
+ },
811
+ {
812
+ "epoch": 2.825,
813
+ "grad_norm": 0.33690381050109863,
814
+ "learning_rate": 2.9166666666666666e-05,
815
+ "loss": 0.9941,
816
+ "step": 11300
817
+ },
818
+ {
819
+ "epoch": 2.85,
820
+ "grad_norm": 0.3230708837509155,
821
+ "learning_rate": 2.5e-05,
822
+ "loss": 1.0061,
823
+ "step": 11400
824
+ },
825
+ {
826
+ "epoch": 2.875,
827
+ "grad_norm": 0.30407923460006714,
828
+ "learning_rate": 2.0833333333333333e-05,
829
+ "loss": 1.0121,
830
+ "step": 11500
831
+ },
832
+ {
833
+ "epoch": 2.9,
834
+ "grad_norm": 0.2791903018951416,
835
+ "learning_rate": 1.6666666666666667e-05,
836
+ "loss": 0.9744,
837
+ "step": 11600
838
+ },
839
+ {
840
+ "epoch": 2.925,
841
+ "grad_norm": 0.35448238253593445,
842
+ "learning_rate": 1.25e-05,
843
+ "loss": 1.0008,
844
+ "step": 11700
845
+ },
846
+ {
847
+ "epoch": 2.95,
848
+ "grad_norm": 0.31761014461517334,
849
+ "learning_rate": 8.333333333333334e-06,
850
+ "loss": 0.9842,
851
+ "step": 11800
852
+ },
853
+ {
854
+ "epoch": 2.975,
855
+ "grad_norm": 0.3444092273712158,
856
+ "learning_rate": 4.166666666666667e-06,
857
+ "loss": 0.9806,
858
+ "step": 11900
859
+ },
860
+ {
861
+ "epoch": 3.0,
862
+ "grad_norm": 0.30812370777130127,
863
+ "learning_rate": 0.0,
864
+ "loss": 1.0067,
865
+ "step": 12000
866
+ }
867
+ ],
868
+ "logging_steps": 100,
869
+ "max_steps": 12000,
870
+ "num_input_tokens_seen": 0,
871
+ "num_train_epochs": 3,
872
+ "save_steps": 500,
873
+ "stateful_callbacks": {
874
+ "TrainerControl": {
875
+ "args": {
876
+ "should_epoch_stop": false,
877
+ "should_evaluate": false,
878
+ "should_log": false,
879
+ "should_save": true,
880
+ "should_training_stop": true
881
+ },
882
+ "attributes": {}
883
+ }
884
+ },
885
+ "total_flos": 1.5796232257536e+16,
886
+ "train_batch_size": 4,
887
+ "trial_name": null,
888
+ "trial_params": null
889
+ }
checkpoint-12000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4a15d761e2a319ab5a1242d68e02509d0416bef1b2e9f394a75f923744fe76a
3
+ size 5240