File size: 4,983 Bytes
e7ee783
d767a35
 
 
 
 
36ba115
e7ee783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36ba115
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

---
language: en
datasets:
- cuad
---

# Model Card for RoBERTa Large Model fine-tuned with CUAD dataset
 
This model is the fine-tuned version of "RoBERTa Large" using CUAD dataset
 
 
 
 
 
# Model Details
 
## Model Description
 
The [Contract Understanding Atticus Dataset (CUAD)](https://www.atticusprojectai.org/cuad), pronounced "kwad", a dataset for legal contract review curated by the Atticus Project. 
 
Contract review is a task about "finding needles in a haystack."
We find that Transformer models have nascent performance on CUAD, but that this performance is strongly influenced by model design and training dataset size. Despite some promising results, there is still substantial room for improvement. As one of the only large, specialized NLP benchmarks annotated by experts, CUAD can serve as a challenging research benchmark for the broader NLP community. 
 
- **Developed by:** TheAtticusProject
- **Shared by [Optional]:** HuggingFace
- **Model type:** Language model
- **Language(s) (NLP):** en
- **License:** More information needed
- **Related Models:** RoBERTA
  - **Parent Model:**RoBERTA Large
- **Resources for more information:**
- [GitHub Repo](https://github.com/TheAtticusProject/cuad) 
- [Associated Paper](https://arxiv.org/abs/2103.06268) 
 
# Uses
 
## Direct Use
 
Legal contract review
 
## Downstream Use [Optional]
 
More information needed
 
## Out-of-Scope Use
 
 
The model should not be used to intentionally create hostile or alienating environments for people. 
 
# Bias, Risks, and Limitations
 
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
 
 
## Recommendations
 
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.
 
 
# Training Details
 
## Training Data
See [cuad dataset card](https://huggingface.co/datasets/cuad) for further details
 
## Training Procedure
 
More information needed
 
### Preprocessing
 
More information needed
 
### Speeds, Sizes, Times
 
More information needed
 
# Evaluation
 
 
 
## Testing Data, Factors & Metrics
 
### Testing Data
#### Extra Data
Researchers may be interested in several gigabytes of unlabeled contract pretraining data, which is available [here](https://drive.google.com/file/d/1of37X0hAhECQ3BN_004D8gm6V88tgZaB/view?usp=sharing).
 
### Factors
 
More information needed
 
### Metrics
 
More information needed
 
## Results 
 
 


We [provide checkpoints](https://zenodo.org/record/4599830) for three of the best models fine-tuned on CUAD: RoBERTa-base (~100M parameters), RoBERTa-large (~300M parameters), and DeBERTa-xlarge (~900M parameters).
 

 
 
# Model Examination
 
More information needed
 
# Environmental Impact
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
 
# Technical Specifications [optional]
 
## Model Architecture and Objective
 
More information needed
 
## Compute Infrastructure
 
More information needed
 
### Hardware
 
More information needed
 
### Software
 
The HuggingFace [Transformers](https://huggingface.co/transformers) library. It was tested with Python 3.8, PyTorch 1.7, and Transformers 4.3/4.4. 
 
# Citation
 
 
**BibTeX:**
 
 @article{hendrycks2021cuad,
      title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, 
      author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
      journal={NeurIPS},
      year={2021}
}
 
 
 
# Glossary [optional]
 
More information needed
 
# More Information [optional]
 
For more details about CUAD and legal contract review, see the [Atticus Project website](https://www.atticusprojectai.org/cuad).
 
# Model Card Authors [optional]
 
TheAtticusProject
 
# Model Card Contact
 
[TheAtticusProject](https://www.atticusprojectai.org/), in collaboration with the Ezi Ozoani and the HuggingFace Team
 
 
# How to Get Started with the Model
 
Use the code below to get started with the model.
 
<details>
<summary> Click to expand </summary>

```python
 
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
 
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/roberta-large-cuad")
 
model = AutoModelForQuestionAnswering.from_pretrained("akdeniz27/roberta-large-cuad")
```

 
</details>