File size: 12,359 Bytes
ea3fb5d
59aaec2
167144a
9de1b02
 
 
 
 
 
 
ea3fb5d
 
9de1b02
 
ea3fb5d
9de1b02
ea3fb5d
9de1b02
167144a
 
 
 
 
 
 
 
 
 
 
 
 
ea3fb5d
9de1b02
ea3fb5d
9de1b02
ea3fb5d
9de1b02
ea3fb5d
9de1b02
ea3fb5d
9de1b02
ea3fb5d
9de1b02
ea3fb5d
9de1b02
ea3fb5d
9de1b02
ea3fb5d
9de1b02
 
29428ff
 
9de1b02
 
29428ff
9de1b02
 
 
 
ea3fb5d
9de1b02
ea3fb5d
167144a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea3fb5d
 
9de1b02
ea3fb5d
9de1b02
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: apache-2.0
base_model: HuggingFaceTB/SmolLM-135M-Instruct
tags:
- trl
- orpo
- generated_from_trainer
model-index:
- name: ft-smollm-135M-instruct-on-hf-ultrafeedback
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ft-smollm-135M-instruct-on-hf-ultrafeedback

This model is a fine-tuned version of [HuggingFaceTB/SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0637
- Rewards/chosen: -0.1247
- Rewards/rejected: -0.1259
- Rewards/accuracies: 0.4730
- Rewards/margins: 0.0012
- Logps/rejected: -1.2589
- Logps/chosen: -1.2469
- Logits/rejected: 55.4006
- Logits/chosen: 55.1081
- Nll Loss: 0.9890
- Log Odds Ratio: -0.7474
- Log Odds Chosen: 0.0451

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 2.2684        | 0.02  | 100  | 1.1258          | -0.1301        | -0.1302          | 0.4680             | 0.0001          | -1.3018        | -1.3007      | 17.8837         | 17.7783       | 1.0514   | -0.7435        | 0.0082          |
| 1.1427        | 0.05  | 200  | 1.1383          | -0.1295        | -0.1295          | 0.4740             | 0.0000          | -1.2954        | -1.2951      | 28.9673         | 28.6104       | 1.0633   | -0.7496        | 0.0117          |
| 1.135         | 0.07  | 300  | 1.1305          | -0.1290        | -0.1288          | 0.4640             | -0.0002         | -1.2876        | -1.2897      | 32.8905         | 32.5299       | 1.0547   | -0.7578        | 0.0117          |
| 1.15          | 0.09  | 400  | 1.1354          | -0.1303        | -0.1297          | 0.4620             | -0.0006         | -1.2969        | -1.3029      | 35.1267         | 34.7456       | 1.0592   | -0.7623        | 0.0073          |
| 1.1138        | 0.11  | 500  | 1.1345          | -0.1311        | -0.1309          | 0.4550             | -0.0002         | -1.3089        | -1.3110      | 36.9308         | 36.5745       | 1.0588   | -0.7571        | 0.0148          |
| 1.1617        | 0.14  | 600  | 1.1364          | -0.1312        | -0.1309          | 0.4660             | -0.0003         | -1.3086        | -1.3117      | 38.4101         | 38.0669       | 1.0602   | -0.7620        | 0.0204          |
| 1.136         | 0.16  | 700  | 1.1341          | -0.1319        | -0.1314          | 0.4610             | -0.0005         | -1.3138        | -1.3185      | 40.1971         | 39.8326       | 1.0581   | -0.7601        | 0.0145          |
| 1.155         | 0.18  | 800  | 1.1349          | -0.1319        | -0.1314          | 0.4620             | -0.0005         | -1.3137        | -1.3188      | 41.2812         | 40.9449       | 1.0588   | -0.7605        | 0.0153          |
| 1.185         | 0.21  | 900  | 1.1533          | -0.1339        | -0.1331          | 0.4570             | -0.0008         | -1.3305        | -1.3387      | 42.5938         | 42.3067       | 1.0766   | -0.7669        | 0.0171          |
| 1.1612        | 0.23  | 1000 | 1.1245          | -0.1310        | -0.1301          | 0.4550             | -0.0009         | -1.3010        | -1.3097      | 43.6187         | 43.3038       | 1.0480   | -0.7649        | 0.0111          |
| 1.2078        | 0.25  | 1100 | 1.1320          | -0.1319        | -0.1311          | 0.4680             | -0.0007         | -1.3115        | -1.3189      | 44.8567         | 44.5401       | 1.0556   | -0.7642        | 0.0173          |
| 1.1671        | 0.27  | 1200 | 1.1365          | -0.1325        | -0.1318          | 0.4600             | -0.0007         | -1.3179        | -1.3250      | 46.2434         | 45.9399       | 1.0605   | -0.7604        | 0.0102          |
| 1.1141        | 0.3   | 1300 | 1.1205          | -0.1306        | -0.1302          | 0.4560             | -0.0004         | -1.3017        | -1.3062      | 46.5845         | 46.2657       | 1.0443   | -0.7615        | 0.0167          |
| 1.1555        | 0.32  | 1400 | 1.1184          | -0.1301        | -0.1298          | 0.4660             | -0.0003         | -1.2978        | -1.3012      | 47.1046         | 46.8050       | 1.0421   | -0.7636        | 0.0205          |
| 1.1108        | 0.34  | 1500 | 1.1203          | -0.1302        | -0.1296          | 0.4640             | -0.0006         | -1.2961        | -1.3016      | 47.1987         | 46.9721       | 1.0438   | -0.7648        | 0.0184          |
| 1.1335        | 0.37  | 1600 | 1.1162          | -0.1302        | -0.1296          | 0.4620             | -0.0006         | -1.2963        | -1.3024      | 48.5285         | 48.2242       | 1.0399   | -0.7628        | 0.0162          |
| 1.1315        | 0.39  | 1700 | 1.1083          | -0.1299        | -0.1299          | 0.4620             | 0.0000          | -1.2987        | -1.2987      | 48.3002         | 48.0707       | 1.0327   | -0.7559        | 0.0278          |
| 1.1034        | 0.41  | 1800 | 1.1083          | -0.1298        | -0.1295          | 0.4640             | -0.0002         | -1.2955        | -1.2978      | 49.6016         | 49.3051       | 1.0330   | -0.7531        | 0.0196          |
| 1.0558        | 0.43  | 1900 | 1.1081          | -0.1290        | -0.1284          | 0.4600             | -0.0006         | -1.2845        | -1.2901      | 49.6973         | 49.4804       | 1.0317   | -0.7645        | 0.0224          |
| 1.0987        | 0.46  | 2000 | 1.1043          | -0.1285        | -0.1280          | 0.4680             | -0.0005         | -1.2798        | -1.2850      | 50.0976         | 49.8574       | 1.0279   | -0.7639        | 0.0175          |
| 1.1083        | 0.48  | 2100 | 1.0967          | -0.1274        | -0.1270          | 0.4660             | -0.0004         | -1.2701        | -1.2744      | 50.4175         | 50.1898       | 1.0200   | -0.7677        | 0.0294          |
| 1.1532        | 0.5   | 2200 | 1.0977          | -0.1285        | -0.1285          | 0.4600             | 0.0000          | -1.2851        | -1.2850      | 51.1548         | 50.9146       | 1.0225   | -0.7521        | 0.0215          |
| 1.1204        | 0.53  | 2300 | 1.0918          | -0.1275        | -0.1276          | 0.4690             | 0.0001          | -1.2762        | -1.2750      | 51.6649         | 51.3750       | 1.0162   | -0.7559        | 0.0256          |
| 1.1226        | 0.55  | 2400 | 1.0955          | -0.1285        | -0.1292          | 0.4700             | 0.0007          | -1.2920        | -1.2848      | 52.1800         | 51.9177       | 1.0204   | -0.7503        | 0.0402          |
| 1.1085        | 0.57  | 2500 | 1.0868          | -0.1272        | -0.1276          | 0.4670             | 0.0004          | -1.2765        | -1.2725      | 52.0037         | 51.7965       | 1.0113   | -0.7554        | 0.0400          |
| 1.0762        | 0.59  | 2600 | 1.0876          | -0.1269        | -0.1271          | 0.4670             | 0.0002          | -1.2713        | -1.2691      | 53.3919         | 53.0727       | 1.0117   | -0.7592        | 0.0388          |
| 1.088         | 0.62  | 2700 | 1.0822          | -0.1263        | -0.1264          | 0.4650             | 0.0001          | -1.2640        | -1.2628      | 53.7430         | 53.4174       | 1.0063   | -0.7587        | 0.0342          |
| 1.1111        | 0.64  | 2800 | 1.0821          | -0.1267        | -0.1274          | 0.4700             | 0.0007          | -1.2740        | -1.2667      | 53.9858         | 53.6674       | 1.0069   | -0.7529        | 0.0426          |
| 1.0906        | 0.66  | 2900 | 1.0785          | -0.1262        | -0.1268          | 0.4690             | 0.0006          | -1.2678        | -1.2617      | 53.9251         | 53.6345       | 1.0033   | -0.7527        | 0.0408          |
| 1.1186        | 0.69  | 3000 | 1.0785          | -0.1258        | -0.1262          | 0.4700             | 0.0004          | -1.2625        | -1.2583      | 54.2337         | 53.9554       | 1.0026   | -0.7593        | 0.0361          |
| 1.1648        | 0.71  | 3100 | 1.0783          | -0.1262        | -0.1269          | 0.4630             | 0.0007          | -1.2693        | -1.2621      | 54.2961         | 54.0128       | 1.0031   | -0.7522        | 0.0405          |
| 1.0952        | 0.73  | 3200 | 1.0784          | -0.1263        | -0.1271          | 0.4700             | 0.0009          | -1.2714        | -1.2625      | 54.8142         | 54.5032       | 1.0034   | -0.7506        | 0.0443          |
| 1.0759        | 0.75  | 3300 | 1.0747          | -0.1260        | -0.1269          | 0.4680             | 0.0009          | -1.2686        | -1.2596      | 55.0002         | 54.6848       | 0.9995   | -0.7519        | 0.0432          |
| 1.073         | 0.78  | 3400 | 1.0688          | -0.1252        | -0.1264          | 0.4720             | 0.0011          | -1.2639        | -1.2525      | 54.9206         | 54.5984       | 0.9938   | -0.7500        | 0.0478          |
| 1.0868        | 0.8   | 3500 | 1.0705          | -0.1262        | -0.1277          | 0.4810             | 0.0015          | -1.2772        | -1.2623      | 55.3186         | 54.9809       | 0.9962   | -0.7429        | 0.0469          |
| 1.0633        | 0.82  | 3600 | 1.0692          | -0.1255        | -0.1266          | 0.4750             | 0.0011          | -1.2656        | -1.2547      | 55.3886         | 55.0766       | 0.9944   | -0.7480        | 0.0435          |
| 1.0789        | 0.85  | 3700 | 1.0660          | -0.1248        | -0.1259          | 0.4750             | 0.0011          | -1.2589        | -1.2484      | 55.2801         | 54.9772       | 0.9910   | -0.7496        | 0.0439          |
| 1.0657        | 0.87  | 3800 | 1.0659          | -0.1252        | -0.1264          | 0.4750             | 0.0012          | -1.2641        | -1.2516      | 55.3299         | 55.0358       | 0.9913   | -0.7457        | 0.0439          |
| 1.115         | 0.89  | 3900 | 1.0661          | -0.1253        | -0.1267          | 0.4790             | 0.0014          | -1.2665        | -1.2526      | 55.4077         | 55.1136       | 0.9917   | -0.7439        | 0.0471          |
| 1.1083        | 0.91  | 4000 | 1.0662          | -0.1252        | -0.1266          | 0.4740             | 0.0014          | -1.2663        | -1.2522      | 55.4230         | 55.1339       | 0.9918   | -0.7441        | 0.0479          |
| 1.079         | 0.94  | 4100 | 1.0639          | -0.1248        | -0.1260          | 0.4740             | 0.0013          | -1.2604        | -1.2477      | 55.4248         | 55.1307       | 0.9893   | -0.7466        | 0.0464          |
| 1.1014        | 0.96  | 4200 | 1.0636          | -0.1247        | -0.1259          | 0.4750             | 0.0012          | -1.2594        | -1.2470      | 55.3555         | 55.0644       | 0.9889   | -0.7470        | 0.0455          |
| 1.0669        | 0.98  | 4300 | 1.0637          | -0.1247        | -0.1259          | 0.4730             | 0.0012          | -1.2589        | -1.2469      | 55.4006         | 55.1081       | 0.9890   | -0.7474        | 0.0451          |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2