File size: 12,359 Bytes
ea3fb5d 59aaec2 167144a 9de1b02 ea3fb5d 9de1b02 ea3fb5d 9de1b02 ea3fb5d 9de1b02 167144a ea3fb5d 9de1b02 ea3fb5d 9de1b02 ea3fb5d 9de1b02 ea3fb5d 9de1b02 ea3fb5d 9de1b02 ea3fb5d 9de1b02 ea3fb5d 9de1b02 ea3fb5d 9de1b02 ea3fb5d 9de1b02 29428ff 9de1b02 29428ff 9de1b02 ea3fb5d 9de1b02 ea3fb5d 167144a ea3fb5d 9de1b02 ea3fb5d 9de1b02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
license: apache-2.0
base_model: HuggingFaceTB/SmolLM-135M-Instruct
tags:
- trl
- orpo
- generated_from_trainer
model-index:
- name: ft-smollm-135M-instruct-on-hf-ultrafeedback
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ft-smollm-135M-instruct-on-hf-ultrafeedback
This model is a fine-tuned version of [HuggingFaceTB/SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0637
- Rewards/chosen: -0.1247
- Rewards/rejected: -0.1259
- Rewards/accuracies: 0.4730
- Rewards/margins: 0.0012
- Logps/rejected: -1.2589
- Logps/chosen: -1.2469
- Logits/rejected: 55.4006
- Logits/chosen: 55.1081
- Nll Loss: 0.9890
- Log Odds Ratio: -0.7474
- Log Odds Chosen: 0.0451
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 2.2684 | 0.02 | 100 | 1.1258 | -0.1301 | -0.1302 | 0.4680 | 0.0001 | -1.3018 | -1.3007 | 17.8837 | 17.7783 | 1.0514 | -0.7435 | 0.0082 |
| 1.1427 | 0.05 | 200 | 1.1383 | -0.1295 | -0.1295 | 0.4740 | 0.0000 | -1.2954 | -1.2951 | 28.9673 | 28.6104 | 1.0633 | -0.7496 | 0.0117 |
| 1.135 | 0.07 | 300 | 1.1305 | -0.1290 | -0.1288 | 0.4640 | -0.0002 | -1.2876 | -1.2897 | 32.8905 | 32.5299 | 1.0547 | -0.7578 | 0.0117 |
| 1.15 | 0.09 | 400 | 1.1354 | -0.1303 | -0.1297 | 0.4620 | -0.0006 | -1.2969 | -1.3029 | 35.1267 | 34.7456 | 1.0592 | -0.7623 | 0.0073 |
| 1.1138 | 0.11 | 500 | 1.1345 | -0.1311 | -0.1309 | 0.4550 | -0.0002 | -1.3089 | -1.3110 | 36.9308 | 36.5745 | 1.0588 | -0.7571 | 0.0148 |
| 1.1617 | 0.14 | 600 | 1.1364 | -0.1312 | -0.1309 | 0.4660 | -0.0003 | -1.3086 | -1.3117 | 38.4101 | 38.0669 | 1.0602 | -0.7620 | 0.0204 |
| 1.136 | 0.16 | 700 | 1.1341 | -0.1319 | -0.1314 | 0.4610 | -0.0005 | -1.3138 | -1.3185 | 40.1971 | 39.8326 | 1.0581 | -0.7601 | 0.0145 |
| 1.155 | 0.18 | 800 | 1.1349 | -0.1319 | -0.1314 | 0.4620 | -0.0005 | -1.3137 | -1.3188 | 41.2812 | 40.9449 | 1.0588 | -0.7605 | 0.0153 |
| 1.185 | 0.21 | 900 | 1.1533 | -0.1339 | -0.1331 | 0.4570 | -0.0008 | -1.3305 | -1.3387 | 42.5938 | 42.3067 | 1.0766 | -0.7669 | 0.0171 |
| 1.1612 | 0.23 | 1000 | 1.1245 | -0.1310 | -0.1301 | 0.4550 | -0.0009 | -1.3010 | -1.3097 | 43.6187 | 43.3038 | 1.0480 | -0.7649 | 0.0111 |
| 1.2078 | 0.25 | 1100 | 1.1320 | -0.1319 | -0.1311 | 0.4680 | -0.0007 | -1.3115 | -1.3189 | 44.8567 | 44.5401 | 1.0556 | -0.7642 | 0.0173 |
| 1.1671 | 0.27 | 1200 | 1.1365 | -0.1325 | -0.1318 | 0.4600 | -0.0007 | -1.3179 | -1.3250 | 46.2434 | 45.9399 | 1.0605 | -0.7604 | 0.0102 |
| 1.1141 | 0.3 | 1300 | 1.1205 | -0.1306 | -0.1302 | 0.4560 | -0.0004 | -1.3017 | -1.3062 | 46.5845 | 46.2657 | 1.0443 | -0.7615 | 0.0167 |
| 1.1555 | 0.32 | 1400 | 1.1184 | -0.1301 | -0.1298 | 0.4660 | -0.0003 | -1.2978 | -1.3012 | 47.1046 | 46.8050 | 1.0421 | -0.7636 | 0.0205 |
| 1.1108 | 0.34 | 1500 | 1.1203 | -0.1302 | -0.1296 | 0.4640 | -0.0006 | -1.2961 | -1.3016 | 47.1987 | 46.9721 | 1.0438 | -0.7648 | 0.0184 |
| 1.1335 | 0.37 | 1600 | 1.1162 | -0.1302 | -0.1296 | 0.4620 | -0.0006 | -1.2963 | -1.3024 | 48.5285 | 48.2242 | 1.0399 | -0.7628 | 0.0162 |
| 1.1315 | 0.39 | 1700 | 1.1083 | -0.1299 | -0.1299 | 0.4620 | 0.0000 | -1.2987 | -1.2987 | 48.3002 | 48.0707 | 1.0327 | -0.7559 | 0.0278 |
| 1.1034 | 0.41 | 1800 | 1.1083 | -0.1298 | -0.1295 | 0.4640 | -0.0002 | -1.2955 | -1.2978 | 49.6016 | 49.3051 | 1.0330 | -0.7531 | 0.0196 |
| 1.0558 | 0.43 | 1900 | 1.1081 | -0.1290 | -0.1284 | 0.4600 | -0.0006 | -1.2845 | -1.2901 | 49.6973 | 49.4804 | 1.0317 | -0.7645 | 0.0224 |
| 1.0987 | 0.46 | 2000 | 1.1043 | -0.1285 | -0.1280 | 0.4680 | -0.0005 | -1.2798 | -1.2850 | 50.0976 | 49.8574 | 1.0279 | -0.7639 | 0.0175 |
| 1.1083 | 0.48 | 2100 | 1.0967 | -0.1274 | -0.1270 | 0.4660 | -0.0004 | -1.2701 | -1.2744 | 50.4175 | 50.1898 | 1.0200 | -0.7677 | 0.0294 |
| 1.1532 | 0.5 | 2200 | 1.0977 | -0.1285 | -0.1285 | 0.4600 | 0.0000 | -1.2851 | -1.2850 | 51.1548 | 50.9146 | 1.0225 | -0.7521 | 0.0215 |
| 1.1204 | 0.53 | 2300 | 1.0918 | -0.1275 | -0.1276 | 0.4690 | 0.0001 | -1.2762 | -1.2750 | 51.6649 | 51.3750 | 1.0162 | -0.7559 | 0.0256 |
| 1.1226 | 0.55 | 2400 | 1.0955 | -0.1285 | -0.1292 | 0.4700 | 0.0007 | -1.2920 | -1.2848 | 52.1800 | 51.9177 | 1.0204 | -0.7503 | 0.0402 |
| 1.1085 | 0.57 | 2500 | 1.0868 | -0.1272 | -0.1276 | 0.4670 | 0.0004 | -1.2765 | -1.2725 | 52.0037 | 51.7965 | 1.0113 | -0.7554 | 0.0400 |
| 1.0762 | 0.59 | 2600 | 1.0876 | -0.1269 | -0.1271 | 0.4670 | 0.0002 | -1.2713 | -1.2691 | 53.3919 | 53.0727 | 1.0117 | -0.7592 | 0.0388 |
| 1.088 | 0.62 | 2700 | 1.0822 | -0.1263 | -0.1264 | 0.4650 | 0.0001 | -1.2640 | -1.2628 | 53.7430 | 53.4174 | 1.0063 | -0.7587 | 0.0342 |
| 1.1111 | 0.64 | 2800 | 1.0821 | -0.1267 | -0.1274 | 0.4700 | 0.0007 | -1.2740 | -1.2667 | 53.9858 | 53.6674 | 1.0069 | -0.7529 | 0.0426 |
| 1.0906 | 0.66 | 2900 | 1.0785 | -0.1262 | -0.1268 | 0.4690 | 0.0006 | -1.2678 | -1.2617 | 53.9251 | 53.6345 | 1.0033 | -0.7527 | 0.0408 |
| 1.1186 | 0.69 | 3000 | 1.0785 | -0.1258 | -0.1262 | 0.4700 | 0.0004 | -1.2625 | -1.2583 | 54.2337 | 53.9554 | 1.0026 | -0.7593 | 0.0361 |
| 1.1648 | 0.71 | 3100 | 1.0783 | -0.1262 | -0.1269 | 0.4630 | 0.0007 | -1.2693 | -1.2621 | 54.2961 | 54.0128 | 1.0031 | -0.7522 | 0.0405 |
| 1.0952 | 0.73 | 3200 | 1.0784 | -0.1263 | -0.1271 | 0.4700 | 0.0009 | -1.2714 | -1.2625 | 54.8142 | 54.5032 | 1.0034 | -0.7506 | 0.0443 |
| 1.0759 | 0.75 | 3300 | 1.0747 | -0.1260 | -0.1269 | 0.4680 | 0.0009 | -1.2686 | -1.2596 | 55.0002 | 54.6848 | 0.9995 | -0.7519 | 0.0432 |
| 1.073 | 0.78 | 3400 | 1.0688 | -0.1252 | -0.1264 | 0.4720 | 0.0011 | -1.2639 | -1.2525 | 54.9206 | 54.5984 | 0.9938 | -0.7500 | 0.0478 |
| 1.0868 | 0.8 | 3500 | 1.0705 | -0.1262 | -0.1277 | 0.4810 | 0.0015 | -1.2772 | -1.2623 | 55.3186 | 54.9809 | 0.9962 | -0.7429 | 0.0469 |
| 1.0633 | 0.82 | 3600 | 1.0692 | -0.1255 | -0.1266 | 0.4750 | 0.0011 | -1.2656 | -1.2547 | 55.3886 | 55.0766 | 0.9944 | -0.7480 | 0.0435 |
| 1.0789 | 0.85 | 3700 | 1.0660 | -0.1248 | -0.1259 | 0.4750 | 0.0011 | -1.2589 | -1.2484 | 55.2801 | 54.9772 | 0.9910 | -0.7496 | 0.0439 |
| 1.0657 | 0.87 | 3800 | 1.0659 | -0.1252 | -0.1264 | 0.4750 | 0.0012 | -1.2641 | -1.2516 | 55.3299 | 55.0358 | 0.9913 | -0.7457 | 0.0439 |
| 1.115 | 0.89 | 3900 | 1.0661 | -0.1253 | -0.1267 | 0.4790 | 0.0014 | -1.2665 | -1.2526 | 55.4077 | 55.1136 | 0.9917 | -0.7439 | 0.0471 |
| 1.1083 | 0.91 | 4000 | 1.0662 | -0.1252 | -0.1266 | 0.4740 | 0.0014 | -1.2663 | -1.2522 | 55.4230 | 55.1339 | 0.9918 | -0.7441 | 0.0479 |
| 1.079 | 0.94 | 4100 | 1.0639 | -0.1248 | -0.1260 | 0.4740 | 0.0013 | -1.2604 | -1.2477 | 55.4248 | 55.1307 | 0.9893 | -0.7466 | 0.0464 |
| 1.1014 | 0.96 | 4200 | 1.0636 | -0.1247 | -0.1259 | 0.4750 | 0.0012 | -1.2594 | -1.2470 | 55.3555 | 55.0644 | 0.9889 | -0.7470 | 0.0455 |
| 1.0669 | 0.98 | 4300 | 1.0637 | -0.1247 | -0.1259 | 0.4730 | 0.0012 | -1.2589 | -1.2469 | 55.4006 | 55.1081 | 0.9890 | -0.7474 | 0.0451 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|