File size: 3,937 Bytes
c94712e
 
b277ef8
b6df156
 
 
 
 
b277ef8
 
 
 
 
b6df156
 
 
b277ef8
b6df156
b277ef8
b6df156
 
 
c94712e
b6df156
b277ef8
 
 
b6df156
 
 
 
589b534
b6df156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589b534
 
 
b6df156
 
 
 
 
589b534
b6df156
 
 
 
 
 
 
 
 
 
589b534
b6df156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589b534
 
 
 
b6df156
 
 
 
589b534
b6df156
589b534
 
b6df156
589b534
 
 
b6df156
 
 
 
 
 
589b534
b6df156
 
 
 
589b534
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
language: kk
license: apache-2.0
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
datasets:
- kazakh_speech_corpus
metrics:
- wer
base_model: facebook/wav2vec2-large-xlsr-53
model-index:
- name: Wav2Vec2-XLSR-53 Kazakh by adilism
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: Kazakh Speech Corpus v1.1
      type: kazakh_speech_corpus
      args: kk
    metrics:
    - type: wer
      value: 19.65
      name: Test WER
---

# Wav2Vec2-Large-XLSR-53-Kazakh

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for Kazakh ASR using the [Kazakh Speech Corpus v1.1](https://issai.nu.edu.kz/kz-speech-corpus/?version=1.1)

When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

from utils import get_test_dataset

test_dataset = get_test_dataset("ISSAI_KSC_335RS_v1.1")

processor = Wav2Vec2Processor.from_pretrained("wav2vec2-large-xlsr-kazakh")
model = Wav2Vec2ForCTC.from_pretrained("wav2vec2-large-xlsr-kazakh")


# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```


## Evaluation

The model can be evaluated as follows on the test set of [Kazakh Speech Corpus v1.1](https://issai.nu.edu.kz/kz-speech-corpus/?version=1.1). To evaluate, download the [archive](https://www.openslr.org/resources/102/ISSAI_KSC_335RS_v1.1_flac.tar.gz), untar and pass the path to data to `get_test_dataset` as below:

```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

from utils import get_test_dataset

test_dataset = get_test_dataset("ISSAI_KSC_335RS_v1.1")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("adilism/wav2vec2-large-xlsr-kazakh")
model = Wav2Vec2ForCTC.from_pretrained("adilism/wav2vec2-large-xlsr-kazakh")
model.to("cuda")


# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

def evaluate(batch):
    inputs = processor(batch["text"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 19.65%


## Training

The Kazakh Speech Corpus v1.1 `train` dataset was used for training.