ryuji-mishima
commited on
Commit
·
ed4e013
1
Parent(s):
ad5410b
handler.pyを追加
Browse files- handler.py +104 -0
handler.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import torch
|
3 |
+
from diffusers import DPMSolverMultistepScheduler, DiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipelineLegacy
|
4 |
+
from PIL import Image
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
|
9 |
+
# set device
|
10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
|
12 |
+
class EndpointHandler():
|
13 |
+
def __init__(self, path=""):
|
14 |
+
# load StableDiffusionInpaintPipeline pipeline
|
15 |
+
self.txt2img_pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
16 |
+
# Set safety_checker
|
17 |
+
self.txt2img_pipe.safety_checker = None
|
18 |
+
# use DPMSolverMultistepScheduler
|
19 |
+
self.txt2img_pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.txt2img_pipe.scheduler.config)
|
20 |
+
|
21 |
+
self.img2img_pipe = StableDiffusionImg2ImgPipeline(
|
22 |
+
vae=self.txt2img_pipe.vae,
|
23 |
+
text_encoder=self.txt2img_pipe.text_encoder,
|
24 |
+
tokenizer=self.txt2img_pipe.tokenizer,
|
25 |
+
unet=self.txt2img_pipe.unet,
|
26 |
+
scheduler=self.txt2img_pipe.scheduler,
|
27 |
+
safety_checker=self.txt2img_pipe.safety_checker,
|
28 |
+
feature_extractor=self.txt2img_pipe.feature_extractor,
|
29 |
+
).to(device)
|
30 |
+
self.inpaint_pipe = StableDiffusionInpaintPipelineLegacy(
|
31 |
+
vae=self.txt2img_pipe.vae,
|
32 |
+
text_encoder=self.txt2img_pipe.text_encoder,
|
33 |
+
tokenizer=self.txt2img_pipe.tokenizer,
|
34 |
+
unet=self.txt2img_pipe.unet,
|
35 |
+
scheduler=self.txt2img_pipe.scheduler,
|
36 |
+
safety_checker=self.txt2img_pipe.safety_checker,
|
37 |
+
feature_extractor=self.txt2img_pipe.feature_extractor,
|
38 |
+
).to(device)
|
39 |
+
|
40 |
+
|
41 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
42 |
+
"""
|
43 |
+
:param data: A dictionary contains `inputs` and optional `image` field.
|
44 |
+
:return: A dictionary with `image` field contains image in base64.
|
45 |
+
"""
|
46 |
+
inputs = data.pop("inputs", data)
|
47 |
+
encoded_image = data.pop("image", None)
|
48 |
+
encoded_mask_image = data.pop("mask_image", None)
|
49 |
+
|
50 |
+
# hyperparamters
|
51 |
+
num_inference_steps = data.pop("num_inference_steps", 25)
|
52 |
+
guidance_scale = data.pop("guidance_scale", 7.5)
|
53 |
+
negative_prompt = data.pop("negative_prompt", None)
|
54 |
+
height = data.pop("height", 512)
|
55 |
+
width = data.pop("width", 512)
|
56 |
+
strength = data.pop("strength", 0.8)
|
57 |
+
|
58 |
+
# run inference pipeline
|
59 |
+
if encoded_image is not None and encoded_mask_image is not None:
|
60 |
+
image = self.decode_base64_image(encoded_image)
|
61 |
+
mask_image = self.decode_base64_image(encoded_mask_image)
|
62 |
+
|
63 |
+
out = self.inpaint_pipe(inputs,
|
64 |
+
init_image=image,
|
65 |
+
mask_image=mask_image,
|
66 |
+
strength=strength,
|
67 |
+
num_inference_steps=num_inference_steps,
|
68 |
+
guidance_scale=guidance_scale,
|
69 |
+
num_images_per_prompt=1,
|
70 |
+
negative_prompt=negative_prompt
|
71 |
+
)
|
72 |
+
return out.images[0]
|
73 |
+
|
74 |
+
elif encoded_image is not None:
|
75 |
+
image = self.decode_base64_image(encoded_image)
|
76 |
+
|
77 |
+
out = self.img2img_pipe(inputs,
|
78 |
+
init_image=image,
|
79 |
+
strength=strength,
|
80 |
+
num_inference_steps=num_inference_steps,
|
81 |
+
guidance_scale=guidance_scale,
|
82 |
+
num_images_per_prompt=1,
|
83 |
+
negative_prompt=negative_prompt
|
84 |
+
)
|
85 |
+
return out.images[0]
|
86 |
+
else:
|
87 |
+
out = self.txt2img_pipe(inputs,
|
88 |
+
num_inference_steps=num_inference_steps,
|
89 |
+
guidance_scale=guidance_scale,
|
90 |
+
num_images_per_prompt=1,
|
91 |
+
negative_prompt=negative_prompt,
|
92 |
+
height=height,
|
93 |
+
width=width
|
94 |
+
)
|
95 |
+
|
96 |
+
# return first generate PIL image
|
97 |
+
return out.images[0]
|
98 |
+
|
99 |
+
# helper to decode input image
|
100 |
+
def decode_base64_image(self, image_string):
|
101 |
+
base64_image = base64.b64decode(image_string)
|
102 |
+
buffer = BytesIO(base64_image)
|
103 |
+
image = Image.open(buffer)
|
104 |
+
return image
|