--- language: - as - bn - brx - doi - gom - gu - hi - kn - ks - mai - ml - mr - mni - ne - or - pa - sa - sat - snd - ta - te - ur language_details: >- asm_Beng, ben_Beng, brx_Deva, doi_Deva, gom_Deva, guj_Gujr, hin_Deva, kan_Knda, kas_Arab, mai_Deva, mal_Mlym, mar_Deva, mni_Mtei, npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck, snd_Deva, tam_Taml, tel_Telu, urd_Arab tags: - indictrans2 - translation - ai4bharat - multilingual license: mit datasets: - flores-200 - IN22-Gen - IN22-Conv metrics: - bleu - chrf - chrf++ - comet inference: false --- # IndicTrans2 This is the model card of IndicTrans2 Indic-Indic Distilled 320M variant adapted after stitching Indic-En Distilled 200M and En-Indic Distilled 200M variants. Please refer to the [blog](https://ai4bharat.iitm.ac.in/blog/indictrans2-m2m/) for further details on model training, data and metrics. ### Usage Instructions Please refer to the [github repository](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_inference) for a detail description on how to use HF compatible IndicTrans2 models for inference. ```python import torch from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer, ) from IndicTransTokenizer import IndicProcessor model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True) ip = IndicProcessor(inference=True) input_sentences = [ "जब मैं छोटा था, मैं हर रोज़ पार्क जाता था।", "हमने पिछले सप्ताह एक नई फिल्म देखी जो कि बहुत प्रेरणादायक थी।", "अगर तुम मुझे उस समय पास मिलते, तो हम बाहर खाना खाने चलते।", "मेरे मित्र ने मुझे उसके जन्मदिन की पार्टी में बुलाया है, और मैं उसे एक तोहफा दूंगा।", ] src_lang, tgt_lang = "hin_Deva", "tam_Taml" batch = ip.preprocess_batch( input_sentences, src_lang=src_lang, tgt_lang=tgt_lang, ) DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Tokenize the sentences and generate input encodings inputs = tokenizer( batch, truncation=True, padding="longest", return_tensors="pt", return_attention_mask=True, ).to(DEVICE) # Generate translations using the model with torch.no_grad(): generated_tokens = model.generate( **inputs, use_cache=True, min_length=0, max_length=256, num_beams=5, num_return_sequences=1, ) # Decode the generated tokens into text with tokenizer.as_target_tokenizer(): generated_tokens = tokenizer.batch_decode( generated_tokens.detach().cpu().tolist(), skip_special_tokens=True, clean_up_tokenization_spaces=True, ) # Postprocess the translations, including entity replacement translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang) for input_sentence, translation in zip(input_sentences, translations): print(f"{src_lang}: {input_sentence}") print(f"{tgt_lang}: {translation}") ``` **Note: IndicTrans2 is now compatible with AutoTokenizer, however you need to use IndicProcessor from [IndicTransTokenizer](https://github.com/VarunGumma/IndicTransTokenizer) for preprocessing before tokenization.** ### Citation If you consider using our work then please cite using: ``` @article{gala2023indictrans, title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages}, author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan}, journal={Transactions on Machine Learning Research}, issn={2835-8856}, year={2023}, url={https://openreview.net/forum?id=vfT4YuzAYA}, note={} } ```