Move to in-library checkpoint
Browse files- modeling_jamba.py +397 -632
modeling_jamba.py
CHANGED
@@ -20,8 +20,6 @@
|
|
20 |
""" PyTorch Jamba model."""
|
21 |
import inspect
|
22 |
import math
|
23 |
-
import warnings
|
24 |
-
from dataclasses import dataclass, field
|
25 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
26 |
|
27 |
import torch
|
@@ -31,10 +29,9 @@ from torch import nn
|
|
31 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
32 |
|
33 |
from transformers.activations import ACT2FN
|
34 |
-
from transformers.cache_utils import
|
35 |
from transformers.modeling_attn_mask_utils import (
|
36 |
-
|
37 |
-
_prepare_4d_causal_attention_mask_for_sdpa,
|
38 |
)
|
39 |
from transformers.modeling_outputs import (
|
40 |
MoeCausalLMOutputWithPast,
|
@@ -42,7 +39,6 @@ from transformers.modeling_outputs import (
|
|
42 |
SequenceClassifierOutputWithPast,
|
43 |
)
|
44 |
from transformers.modeling_utils import PreTrainedModel
|
45 |
-
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
|
46 |
from transformers.utils import (
|
47 |
add_start_docstrings,
|
48 |
add_start_docstrings_to_model_forward,
|
@@ -50,11 +46,15 @@ from transformers.utils import (
|
|
50 |
logging,
|
51 |
replace_return_docstrings,
|
52 |
)
|
53 |
-
from transformers.utils.import_utils import
|
|
|
|
|
|
|
|
|
54 |
from .configuration_jamba import JambaConfig
|
55 |
|
56 |
|
57 |
-
# try except block so it'll work with trust_remote_code.
|
58 |
try:
|
59 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
60 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
@@ -63,22 +63,15 @@ try:
|
|
63 |
except ImportError:
|
64 |
pass
|
65 |
|
66 |
-
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
67 |
-
# It means that the function will not be traced through and simply appear as a node in the graph.
|
68 |
-
if is_torch_fx_available():
|
69 |
-
if not is_torch_greater_or_equal_than_1_13:
|
70 |
-
import torch.fx
|
71 |
-
|
72 |
-
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
73 |
|
74 |
-
# try except block so it'll work with trust_remote_code.
|
75 |
try:
|
76 |
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
|
77 |
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
78 |
except ImportError:
|
79 |
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
80 |
|
81 |
-
# try except block so it'll work with trust_remote_code.
|
82 |
try:
|
83 |
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
84 |
except ImportError:
|
@@ -94,9 +87,12 @@ logger = logging.get_logger(__name__)
|
|
94 |
_CONFIG_FOR_DOC = "JambaConfig"
|
95 |
|
96 |
|
97 |
-
#
|
98 |
def load_balancing_loss_func(
|
99 |
-
|
|
|
|
|
|
|
100 |
) -> float:
|
101 |
r"""
|
102 |
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
@@ -106,7 +102,7 @@ def load_balancing_loss_func(
|
|
106 |
experts is too unbalanced.
|
107 |
|
108 |
Args:
|
109 |
-
|
110 |
Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of
|
111 |
shape [batch_size X sequence_length, num_experts].
|
112 |
attention_mask (`torch.Tensor`, None):
|
@@ -118,16 +114,16 @@ def load_balancing_loss_func(
|
|
118 |
Returns:
|
119 |
The auxiliary loss.
|
120 |
"""
|
121 |
-
if
|
122 |
return 0
|
123 |
|
124 |
-
if isinstance(
|
125 |
-
compute_device =
|
126 |
-
|
127 |
-
[
|
128 |
)
|
129 |
|
130 |
-
routing_weights = torch.nn.functional.softmax(
|
131 |
|
132 |
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
133 |
|
@@ -141,7 +137,7 @@ def load_balancing_loss_func(
|
|
141 |
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
142 |
else:
|
143 |
batch_size, sequence_length = attention_mask.shape
|
144 |
-
num_hidden_layers =
|
145 |
|
146 |
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
147 |
expert_attention_mask = (
|
@@ -217,6 +213,82 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
217 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
218 |
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Jamba
|
221 |
class JambaAttention(nn.Module):
|
222 |
"""
|
@@ -253,23 +325,16 @@ class JambaAttention(nn.Module):
|
|
253 |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
254 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
255 |
|
256 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
257 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
258 |
-
|
259 |
def forward(
|
260 |
self,
|
261 |
hidden_states: torch.Tensor,
|
262 |
attention_mask: Optional[torch.Tensor] = None,
|
263 |
position_ids: Optional[torch.LongTensor] = None,
|
264 |
-
past_key_value: Optional[
|
265 |
output_attentions: bool = False,
|
266 |
use_cache: bool = False,
|
267 |
-
|
268 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
269 |
-
if "padding_mask" in kwargs:
|
270 |
-
warnings.warn(
|
271 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
272 |
-
)
|
273 |
bsz, q_len, _ = hidden_states.size()
|
274 |
|
275 |
query_states = self.q_proj(hidden_states)
|
@@ -280,16 +345,6 @@ class JambaAttention(nn.Module):
|
|
280 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
281 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
282 |
|
283 |
-
kv_seq_len = key_states.shape[-2]
|
284 |
-
if past_key_value is not None:
|
285 |
-
if self.layer_idx is None:
|
286 |
-
raise ValueError(
|
287 |
-
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
288 |
-
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
289 |
-
"with a layer index."
|
290 |
-
)
|
291 |
-
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
292 |
-
|
293 |
if past_key_value is not None:
|
294 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
295 |
|
@@ -299,19 +354,9 @@ class JambaAttention(nn.Module):
|
|
299 |
|
300 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
301 |
|
302 |
-
if
|
303 |
-
|
304 |
-
|
305 |
-
f" {attn_weights.size()}"
|
306 |
-
)
|
307 |
-
|
308 |
-
if attention_mask is not None:
|
309 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
310 |
-
raise ValueError(
|
311 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
312 |
-
)
|
313 |
-
|
314 |
-
attn_weights = attn_weights + attention_mask
|
315 |
|
316 |
# upcast attention to fp32
|
317 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
@@ -357,37 +402,26 @@ class JambaFlashAttention2(JambaAttention):
|
|
357 |
hidden_states: torch.Tensor,
|
358 |
attention_mask: Optional[torch.Tensor] = None,
|
359 |
position_ids: Optional[torch.LongTensor] = None,
|
360 |
-
past_key_value: Optional[
|
361 |
output_attentions: bool = False,
|
362 |
use_cache: bool = False,
|
|
|
363 |
**kwargs,
|
364 |
):
|
365 |
-
if "padding_mask" in kwargs:
|
366 |
-
warnings.warn(
|
367 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
368 |
-
)
|
369 |
-
|
370 |
-
# overwrite attention_mask with padding_mask
|
371 |
-
attention_mask = kwargs.pop("padding_mask")
|
372 |
bsz, q_len, _ = hidden_states.size()
|
373 |
|
374 |
query_states = self.q_proj(hidden_states)
|
375 |
key_states = self.k_proj(hidden_states)
|
376 |
value_states = self.v_proj(hidden_states)
|
377 |
|
|
|
|
|
|
|
378 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
379 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
380 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
381 |
|
382 |
-
kv_seq_len =
|
383 |
-
if past_key_value is not None:
|
384 |
-
if self.layer_idx is None:
|
385 |
-
raise ValueError(
|
386 |
-
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
387 |
-
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
388 |
-
"with a layer index."
|
389 |
-
)
|
390 |
-
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
391 |
|
392 |
use_sliding_windows = (
|
393 |
_flash_supports_window_size
|
@@ -403,7 +437,7 @@ class JambaFlashAttention2(JambaAttention):
|
|
403 |
|
404 |
if past_key_value is not None:
|
405 |
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
406 |
-
cache_has_contents =
|
407 |
if (
|
408 |
getattr(self.config, "sliding_window", None) is not None
|
409 |
and kv_seq_len > self.config.sliding_window
|
@@ -505,7 +539,7 @@ class JambaFlashAttention2(JambaAttention):
|
|
505 |
attention_mask (`torch.Tensor`):
|
506 |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
507 |
position of padding tokens and 1 for the position of non-padding tokens.
|
508 |
-
dropout (`
|
509 |
Attention dropout
|
510 |
softmax_scale (`float`, *optional*):
|
511 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
@@ -580,6 +614,7 @@ class JambaFlashAttention2(JambaAttention):
|
|
580 |
|
581 |
return attn_output
|
582 |
|
|
|
583 |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
584 |
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
585 |
|
@@ -637,9 +672,10 @@ class JambaSdpaAttention(JambaAttention):
|
|
637 |
hidden_states: torch.Tensor,
|
638 |
attention_mask: Optional[torch.Tensor] = None,
|
639 |
position_ids: Optional[torch.LongTensor] = None,
|
640 |
-
past_key_value: Optional[
|
641 |
output_attentions: bool = False,
|
642 |
use_cache: bool = False,
|
|
|
643 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
644 |
if output_attentions:
|
645 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
@@ -666,21 +702,15 @@ class JambaSdpaAttention(JambaAttention):
|
|
666 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
667 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
668 |
|
669 |
-
kv_seq_len = key_states.shape[-2]
|
670 |
-
if past_key_value is not None:
|
671 |
-
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
672 |
-
|
673 |
if past_key_value is not None:
|
674 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
675 |
|
676 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
677 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
678 |
|
|
|
679 |
if attention_mask is not None:
|
680 |
-
|
681 |
-
raise ValueError(
|
682 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
683 |
-
)
|
684 |
|
685 |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
686 |
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
@@ -693,7 +723,7 @@ class JambaSdpaAttention(JambaAttention):
|
|
693 |
query_states,
|
694 |
key_states,
|
695 |
value_states,
|
696 |
-
attn_mask=
|
697 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
698 |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
699 |
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
@@ -714,99 +744,6 @@ JAMBA_ATTENTION_CLASSES = {
|
|
714 |
}
|
715 |
|
716 |
|
717 |
-
class HybridMambaAttentionDynamicCache(DynamicCache):
|
718 |
-
"""
|
719 |
-
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
|
720 |
-
(which has a constant shape regardless of seq_len).
|
721 |
-
|
722 |
-
It stores the Key and Value states as a list of tensors, one for each layer.
|
723 |
-
The expected shape for each tensor for attention layers is `[batch_size, num_heads, seq_len, head_dim]`.
|
724 |
-
For the mamba layers, the `key_cache` represents the convolution state and has a shape of `[batch_size, d_inner, 1, d_conv]`,
|
725 |
-
and the `value_cache` represents the ssm state and has a shape of `[batch_size, d_inner, 1, d_state]`. Mamba cache
|
726 |
-
shape[2] is a dummy "seqlen" dimension to match the number of attention cache dimensions. For mamba, the cache
|
727 |
-
doesn't grow with seqlen so this dimension is always 1.
|
728 |
-
"""
|
729 |
-
|
730 |
-
def __init__(self) -> None:
|
731 |
-
super().__init__()
|
732 |
-
self.attention_layer_idx = None # used to know which layer has data on seqlen in the cache shape
|
733 |
-
|
734 |
-
def update(
|
735 |
-
self,
|
736 |
-
key_states: torch.Tensor,
|
737 |
-
value_states: torch.Tensor,
|
738 |
-
layer_idx: int,
|
739 |
-
cache_kwargs: Optional[Dict[str, Any]] = None,
|
740 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
741 |
-
"""
|
742 |
-
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
743 |
-
|
744 |
-
Parameters:
|
745 |
-
key_states (`torch.Tensor`):
|
746 |
-
The new key states to cache.
|
747 |
-
value_states (`torch.Tensor`):
|
748 |
-
The new value states to cache.
|
749 |
-
layer_idx (`int`):
|
750 |
-
The index of the layer to cache the states for.
|
751 |
-
cache_kwargs (`Dict[str, Any]`, `optional`):
|
752 |
-
Additional arguments for the cache subclass. No additional arguments are used in `HybridMambaAttentionDynamicCache`.
|
753 |
-
|
754 |
-
Return:
|
755 |
-
A tuple containing the updated key and value states.
|
756 |
-
"""
|
757 |
-
# Update the number of seen tokens
|
758 |
-
if self.attention_layer_idx is None and self._is_attn_layer(key_states, value_states):
|
759 |
-
self.attention_layer_idx = layer_idx
|
760 |
-
if self.attention_layer_idx is not None and layer_idx == self.attention_layer_idx:
|
761 |
-
if hasattr(self, "_seen_tokens"):
|
762 |
-
self._seen_tokens += key_states.shape[-2]
|
763 |
-
else:
|
764 |
-
self.seen_tokens += key_states.shape[-2]
|
765 |
-
|
766 |
-
# Update the cache
|
767 |
-
if len(self.key_cache) <= layer_idx:
|
768 |
-
self.key_cache.append(key_states)
|
769 |
-
self.value_cache.append(value_states)
|
770 |
-
else:
|
771 |
-
if self._is_attn_layer(self.key_cache[layer_idx], self.value_cache[layer_idx]):
|
772 |
-
# attention layer - append the new states to the existing cache on the seqlen dimension
|
773 |
-
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
774 |
-
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
775 |
-
else:
|
776 |
-
# mamba layer - replace the cache with the new states
|
777 |
-
self.key_cache[layer_idx] = key_states
|
778 |
-
self.value_cache[layer_idx] = value_states
|
779 |
-
|
780 |
-
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
781 |
-
|
782 |
-
def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
|
783 |
-
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
784 |
-
if layer_idx is not None:
|
785 |
-
if len(self.key_cache) <= layer_idx:
|
786 |
-
return 0
|
787 |
-
if self._is_attn_layer(self.key_cache[layer_idx], self.value_cache[layer_idx]):
|
788 |
-
return self.key_cache[layer_idx].shape[-2]
|
789 |
-
else:
|
790 |
-
warnings.warn(
|
791 |
-
f"Asked to get the sequence length from cache of layer {layer_idx} which is not an attention layer. "
|
792 |
-
f"Ignoring that and using an attention layer cache"
|
793 |
-
)
|
794 |
-
if self.attention_layer_idx is None or len(self.key_cache) <= self.attention_layer_idx:
|
795 |
-
return 0
|
796 |
-
return self.key_cache[self.attention_layer_idx].shape[-2]
|
797 |
-
|
798 |
-
@staticmethod
|
799 |
-
def _is_attn_layer(key_states: torch.Tensor, value_states: torch.Tensor):
|
800 |
-
return key_states.shape[-1] == value_states.shape[-1]
|
801 |
-
|
802 |
-
|
803 |
-
@dataclass
|
804 |
-
class MambaCacheParams:
|
805 |
-
seqlen_offset: int = 0
|
806 |
-
conv_states: Dict[int, torch.Tensor] = field(default_factory=dict)
|
807 |
-
ssm_states: Dict[int, torch.Tensor] = field(default_factory=dict)
|
808 |
-
|
809 |
-
|
810 |
# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
|
811 |
class JambaMambaMixer(nn.Module):
|
812 |
"""
|
@@ -838,7 +775,6 @@ class JambaMambaMixer(nn.Module):
|
|
838 |
|
839 |
self.activation = config.hidden_act
|
840 |
self.act = ACT2FN[config.hidden_act]
|
841 |
-
self.apply_inner_layernorms = config.mamba_inner_layernorms
|
842 |
|
843 |
self.use_fast_kernels = config.use_mamba_kernels
|
844 |
|
@@ -858,14 +794,9 @@ class JambaMambaMixer(nn.Module):
|
|
858 |
self.D = nn.Parameter(torch.ones(self.intermediate_size))
|
859 |
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
|
860 |
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
self.C_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
|
865 |
-
else:
|
866 |
-
self.dt_layernorm = None
|
867 |
-
self.B_layernorm = None
|
868 |
-
self.C_layernorm = None
|
869 |
|
870 |
if not is_fast_path_available:
|
871 |
logger.warning_once(
|
@@ -874,145 +805,121 @@ class JambaMambaMixer(nn.Module):
|
|
874 |
" https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
|
875 |
)
|
876 |
|
877 |
-
def
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
# 1. Gated MLP's linear projection
|
888 |
projected_states = self.in_proj(hidden_states).transpose(1, 2)
|
889 |
|
890 |
-
if
|
891 |
-
|
892 |
-
|
893 |
-
contextualized_states = mamba_inner_fn(
|
894 |
-
projected_states,
|
895 |
-
self.conv1d.weight,
|
896 |
-
self.conv1d.bias if self.use_conv_bias else None,
|
897 |
-
self.x_proj.weight,
|
898 |
-
self.dt_proj.weight,
|
899 |
-
self.out_proj.weight,
|
900 |
-
self.out_proj.bias.float() if self.use_bias else None,
|
901 |
-
-torch.exp(self.A_log.float()),
|
902 |
-
None, # input-dependent B
|
903 |
-
None, # input-dependent C
|
904 |
-
self.D.float(),
|
905 |
-
delta_bias=self.dt_proj.bias.float(),
|
906 |
-
delta_softplus=True,
|
907 |
-
)
|
908 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
909 |
else:
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
)
|
922 |
-
hidden_states = hidden_states.unsqueeze(-1)
|
923 |
-
else:
|
924 |
-
if cache_params is not None:
|
925 |
-
conv_states = nn.functional.pad(
|
926 |
-
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
|
927 |
-
)
|
928 |
-
cache_params.conv_states[self.layer_idx].copy_(conv_states)
|
929 |
-
hidden_states = causal_conv1d_fn(
|
930 |
-
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
|
931 |
-
)
|
932 |
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
938 |
)
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
# linear layers, and requires to call the forward pass directly.
|
945 |
-
# The original code here was: ```discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)```
|
946 |
-
if hasattr(self.dt_proj, "base_layer"):
|
947 |
-
# In case of LoRA, we need to access the base layer to get the weight
|
948 |
-
time_proj_bias = self.dt_proj.base_layer.bias
|
949 |
-
self.dt_proj.base_layer.bias = None
|
950 |
-
else:
|
951 |
-
time_proj_bias = self.dt_proj.bias
|
952 |
-
self.dt_proj.bias = None
|
953 |
-
discrete_time_step = self.dt_proj(time_step).transpose(1, 2)
|
954 |
-
if hasattr(self.dt_proj, "base_layer"):
|
955 |
-
self.dt_proj.base_layer.bias = time_proj_bias
|
956 |
-
else:
|
957 |
-
self.dt_proj.bias = time_proj_bias
|
958 |
-
|
959 |
-
A = -torch.exp(self.A_log.float())
|
960 |
-
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
961 |
-
time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None
|
962 |
-
if cache_params is not None and cache_params.seqlen_offset > 0:
|
963 |
-
scan_outputs = selective_state_update(
|
964 |
-
cache_params.ssm_states[self.layer_idx],
|
965 |
-
hidden_states[..., 0],
|
966 |
-
discrete_time_step[..., 0],
|
967 |
-
A,
|
968 |
-
B[:, 0],
|
969 |
-
C[:, 0],
|
970 |
-
self.D,
|
971 |
-
gate[..., 0],
|
972 |
-
time_proj_bias,
|
973 |
-
dt_softplus=True,
|
974 |
-
).unsqueeze(-1)
|
975 |
-
else:
|
976 |
-
scan_outputs, ssm_state = selective_scan_fn(
|
977 |
-
hidden_states,
|
978 |
-
discrete_time_step,
|
979 |
-
A,
|
980 |
-
B.transpose(1, 2),
|
981 |
-
C.transpose(1, 2),
|
982 |
-
self.D.float(),
|
983 |
-
gate,
|
984 |
-
time_proj_bias,
|
985 |
-
delta_softplus=True,
|
986 |
-
return_last_state=True,
|
987 |
-
)
|
988 |
-
if ssm_state is not None and cache_params is not None:
|
989 |
-
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
990 |
|
991 |
-
# 4. Final linear projection
|
992 |
-
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
|
993 |
return contextualized_states
|
994 |
|
995 |
# fmt: off
|
996 |
-
def slow_forward(self, input_states, cache_params:
|
997 |
batch_size, seq_len, _ = input_states.shape
|
998 |
dtype = input_states.dtype
|
999 |
# 1. Gated MLP's linear projection
|
1000 |
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
|
1001 |
hidden_states, gate = projected_states.chunk(2, dim=1)
|
1002 |
|
|
|
1003 |
# 2. Convolution sequence transformation
|
1004 |
-
if cache_params
|
1005 |
if self.training:
|
1006 |
# In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass
|
1007 |
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
1008 |
else:
|
1009 |
ssm_state = cache_params.ssm_states[self.layer_idx]
|
1010 |
|
1011 |
-
if cache_params.
|
|
|
1012 |
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
1013 |
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
1014 |
conv_state[:, :, -1] = hidden_states[:, :, 0]
|
1015 |
-
cache_params.conv_states[self.layer_idx]
|
1016 |
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
1017 |
if self.use_conv_bias:
|
1018 |
hidden_states += self.conv1d.bias
|
@@ -1022,7 +929,7 @@ class JambaMambaMixer(nn.Module):
|
|
1022 |
hidden_states,
|
1023 |
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
1024 |
)
|
1025 |
-
cache_params.conv_states[self.layer_idx]
|
1026 |
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
1027 |
else:
|
1028 |
ssm_state = torch.zeros(
|
@@ -1037,7 +944,11 @@ class JambaMambaMixer(nn.Module):
|
|
1037 |
time_step, B, C = torch.split(
|
1038 |
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
1039 |
)
|
1040 |
-
|
|
|
|
|
|
|
|
|
1041 |
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
|
1042 |
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
|
1043 |
|
@@ -1057,15 +968,15 @@ class JambaMambaMixer(nn.Module):
|
|
1057 |
scan_output = scan_output + (hidden_states * self.D[None, :, None])
|
1058 |
scan_output = (scan_output * self.act(gate))
|
1059 |
|
1060 |
-
if
|
1061 |
-
cache_params.ssm_states[self.layer_idx]
|
1062 |
|
1063 |
# 4. Final linear projection
|
1064 |
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
|
1065 |
return contextualized_states
|
1066 |
# fmt: on
|
1067 |
|
1068 |
-
def
|
1069 |
if self.use_fast_kernels:
|
1070 |
if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
|
1071 |
raise ValueError(
|
@@ -1074,64 +985,17 @@ class JambaMambaMixer(nn.Module):
|
|
1074 |
return self.cuda_kernels_forward(hidden_states, cache_params)
|
1075 |
return self.slow_forward(hidden_states, cache_params)
|
1076 |
|
1077 |
-
def forward(
|
1078 |
-
self,
|
1079 |
-
hidden_states: torch.Tensor,
|
1080 |
-
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
1081 |
-
**kwargs,
|
1082 |
-
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
1083 |
-
if past_key_value is not None:
|
1084 |
-
cache_params = MambaCacheParams(
|
1085 |
-
seqlen_offset=0 if hidden_states.shape[1] > 1 else past_key_value.seen_tokens,
|
1086 |
-
)
|
1087 |
-
if len(past_key_value.key_cache) > self.layer_idx:
|
1088 |
-
# we already have cache for this layer, use it
|
1089 |
-
# remove the dummy seqlen dim (dim=2)
|
1090 |
-
cache_params.conv_states[self.layer_idx] = past_key_value.key_cache[self.layer_idx].squeeze(2)
|
1091 |
-
cache_params.ssm_states[self.layer_idx] = past_key_value.value_cache[self.layer_idx].squeeze(2)
|
1092 |
-
else:
|
1093 |
-
# we don't have cache for this layer, initialize it with zeros
|
1094 |
-
batch_size = hidden_states.shape[0]
|
1095 |
-
cache_params.conv_states[self.layer_idx] = torch.zeros(
|
1096 |
-
batch_size,
|
1097 |
-
self.intermediate_size,
|
1098 |
-
self.conv_kernel_size,
|
1099 |
-
device=hidden_states.device,
|
1100 |
-
dtype=hidden_states.dtype,
|
1101 |
-
)
|
1102 |
-
cache_params.ssm_states[self.layer_idx] = torch.zeros(
|
1103 |
-
batch_size,
|
1104 |
-
self.intermediate_size,
|
1105 |
-
self.ssm_state_size,
|
1106 |
-
device=hidden_states.device,
|
1107 |
-
dtype=hidden_states.dtype,
|
1108 |
-
)
|
1109 |
-
else:
|
1110 |
-
cache_params = None
|
1111 |
-
|
1112 |
-
res = self.mixer_forward(hidden_states, cache_params)
|
1113 |
-
|
1114 |
-
if past_key_value is not None:
|
1115 |
-
past_key_value.update(
|
1116 |
-
# add dummy seqlen dim (dim=2) to match the number of dimensions of the attention cache
|
1117 |
-
cache_params.conv_states[self.layer_idx].unsqueeze(2),
|
1118 |
-
cache_params.ssm_states[self.layer_idx].unsqueeze(2),
|
1119 |
-
self.layer_idx,
|
1120 |
-
)
|
1121 |
-
|
1122 |
-
return res, past_key_value
|
1123 |
-
|
1124 |
|
|
|
1125 |
class JambaMLP(nn.Module):
|
1126 |
-
def __init__(self, config
|
1127 |
super().__init__()
|
1128 |
-
self.
|
1129 |
-
self.
|
1130 |
-
|
1131 |
-
self.gate_proj = nn.Linear(self.
|
1132 |
-
self.
|
1133 |
-
self.
|
1134 |
-
|
1135 |
self.act_fn = ACT2FN[config.hidden_act]
|
1136 |
|
1137 |
def forward(self, x):
|
@@ -1151,39 +1015,20 @@ class JambaSparseMoeBlock(nn.Module):
|
|
1151 |
and memory on padding.
|
1152 |
"""
|
1153 |
|
1154 |
-
def __init__(self, config: JambaConfig
|
1155 |
super().__init__()
|
1156 |
self.hidden_dim = config.hidden_size
|
1157 |
self.ffn_dim = config.intermediate_size
|
|
|
|
|
1158 |
|
1159 |
-
|
1160 |
-
self.num_experts = num_experts
|
1161 |
-
self.top_k = num_experts_per_tok
|
1162 |
-
|
1163 |
-
if num_experts > 1:
|
1164 |
-
# expert routing
|
1165 |
-
self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
1166 |
-
else:
|
1167 |
-
self.router = None
|
1168 |
-
|
1169 |
self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)])
|
1170 |
|
1171 |
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
1172 |
""" """
|
1173 |
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
1174 |
|
1175 |
-
if self.num_experts == 1:
|
1176 |
-
# in this case we have a single MLP block and don't need to do any routing
|
1177 |
-
final_hidden_states = self.experts[0](hidden_states)
|
1178 |
-
router_logits = torch.ones(
|
1179 |
-
(batch_size * sequence_length, 1),
|
1180 |
-
device=hidden_states.device,
|
1181 |
-
dtype=hidden_states.dtype,
|
1182 |
-
requires_grad=hidden_states.requires_grad,
|
1183 |
-
)
|
1184 |
-
return final_hidden_states, router_logits
|
1185 |
-
|
1186 |
-
# in this case we have multiple experts and need to do routing
|
1187 |
hidden_states = hidden_states.view(-1, hidden_dim)
|
1188 |
# router_logits: (batch * sequence_length, n_experts)
|
1189 |
router_logits = self.router(hidden_states)
|
@@ -1208,15 +1053,11 @@ class JambaSparseMoeBlock(nn.Module):
|
|
1208 |
if top_x.shape[0] == 0:
|
1209 |
continue
|
1210 |
|
1211 |
-
# in torch it is faster to index using lists than torch tensors
|
1212 |
-
top_x_list = top_x.tolist()
|
1213 |
-
idx_list = idx.tolist()
|
1214 |
-
|
1215 |
# Index the correct hidden states and compute the expert hidden state for
|
1216 |
# the current expert. We need to make sure to multiply the output hidden
|
1217 |
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
1218 |
-
current_state = hidden_states[None,
|
1219 |
-
current_hidden_states = expert_layer(current_state) * routing_weights[
|
1220 |
|
1221 |
# However `index_add_` only support torch tensors for indexing so we'll use
|
1222 |
# the `top_x` tensor here.
|
@@ -1226,37 +1067,33 @@ class JambaSparseMoeBlock(nn.Module):
|
|
1226 |
|
1227 |
|
1228 |
class JambaAttentionDecoderLayer(nn.Module):
|
1229 |
-
def __init__(self, config: JambaConfig,
|
1230 |
super().__init__()
|
1231 |
-
|
1232 |
self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
1233 |
|
1234 |
-
|
1235 |
-
self.
|
1236 |
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1237 |
-
self.
|
1238 |
|
1239 |
def forward(
|
1240 |
self,
|
1241 |
hidden_states: torch.Tensor,
|
1242 |
attention_mask: Optional[torch.Tensor] = None,
|
1243 |
position_ids: Optional[torch.LongTensor] = None,
|
1244 |
-
past_key_value: Optional[
|
1245 |
output_attentions: Optional[bool] = False,
|
1246 |
output_router_logits: Optional[bool] = False,
|
1247 |
use_cache: Optional[bool] = False,
|
1248 |
-
|
1249 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1250 |
-
if "padding_mask" in kwargs:
|
1251 |
-
warnings.warn(
|
1252 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1253 |
-
)
|
1254 |
"""
|
1255 |
Args:
|
1256 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1257 |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1258 |
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1259 |
-
past_key_value (`
|
1260 |
output_attentions (`bool`, *optional*):
|
1261 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1262 |
returned tensors for more detail.
|
@@ -1266,6 +1103,8 @@ class JambaAttentionDecoderLayer(nn.Module):
|
|
1266 |
use_cache (`bool`, *optional*):
|
1267 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1268 |
(see `past_key_values`).
|
|
|
|
|
1269 |
"""
|
1270 |
|
1271 |
residual = hidden_states
|
@@ -1279,15 +1118,20 @@ class JambaAttentionDecoderLayer(nn.Module):
|
|
1279 |
past_key_value=past_key_value,
|
1280 |
output_attentions=output_attentions,
|
1281 |
use_cache=use_cache,
|
|
|
1282 |
)
|
1283 |
|
1284 |
# residual connection after attention
|
1285 |
hidden_states = residual + hidden_states
|
1286 |
|
1287 |
-
#
|
1288 |
residual = hidden_states
|
1289 |
-
hidden_states = self.
|
1290 |
-
|
|
|
|
|
|
|
|
|
1291 |
hidden_states = residual + hidden_states
|
1292 |
|
1293 |
outputs = (hidden_states,)
|
@@ -1305,15 +1149,15 @@ class JambaAttentionDecoderLayer(nn.Module):
|
|
1305 |
|
1306 |
|
1307 |
class JambaMambaDecoderLayer(nn.Module):
|
1308 |
-
def __init__(self, config: JambaConfig,
|
1309 |
super().__init__()
|
1310 |
-
|
1311 |
self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx)
|
1312 |
|
1313 |
-
|
1314 |
-
self.
|
1315 |
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1316 |
-
self.
|
1317 |
|
1318 |
def forward(
|
1319 |
self,
|
@@ -1324,18 +1168,14 @@ class JambaMambaDecoderLayer(nn.Module):
|
|
1324 |
output_attentions: Optional[bool] = False,
|
1325 |
output_router_logits: Optional[bool] = False,
|
1326 |
use_cache: Optional[bool] = False,
|
1327 |
-
|
1328 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1329 |
-
if "padding_mask" in kwargs:
|
1330 |
-
warnings.warn(
|
1331 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1332 |
-
)
|
1333 |
"""
|
1334 |
Args:
|
1335 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1336 |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1337 |
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1338 |
-
past_key_value (`
|
1339 |
output_attentions (`bool`, *optional*):
|
1340 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1341 |
returned tensors for more detail.
|
@@ -1345,28 +1185,31 @@ class JambaMambaDecoderLayer(nn.Module):
|
|
1345 |
use_cache (`bool`, *optional*):
|
1346 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1347 |
(see `past_key_values`).
|
|
|
|
|
1348 |
"""
|
1349 |
|
1350 |
residual = hidden_states
|
1351 |
|
1352 |
hidden_states = self.input_layernorm(hidden_states)
|
1353 |
|
1354 |
-
hidden_states
|
1355 |
hidden_states=hidden_states,
|
1356 |
-
|
1357 |
)
|
1358 |
-
|
1359 |
-
past_seqlen = self._get_past_seqlen(past_key_value, seqlen)
|
1360 |
-
num_attention_heads = self.mamba.config.num_attention_heads
|
1361 |
-
self_attn_weights = torch.empty(bs, num_attention_heads, seqlen, past_seqlen, device="meta")
|
1362 |
|
1363 |
# residual connection after mamba
|
1364 |
hidden_states = residual + hidden_states
|
1365 |
|
1366 |
-
#
|
1367 |
residual = hidden_states
|
1368 |
-
hidden_states = self.
|
1369 |
-
|
|
|
|
|
|
|
|
|
1370 |
hidden_states = residual + hidden_states
|
1371 |
|
1372 |
outputs = (hidden_states,)
|
@@ -1375,25 +1218,13 @@ class JambaMambaDecoderLayer(nn.Module):
|
|
1375 |
outputs += (self_attn_weights,)
|
1376 |
|
1377 |
if use_cache:
|
1378 |
-
outputs += (
|
1379 |
|
1380 |
if output_router_logits:
|
1381 |
outputs += (router_logits,)
|
1382 |
|
1383 |
return outputs
|
1384 |
|
1385 |
-
def _get_past_seqlen(self, past_key_value, seqlen):
|
1386 |
-
if past_key_value is None:
|
1387 |
-
return seqlen
|
1388 |
-
past_seqlen = past_key_value.get_seq_length()
|
1389 |
-
if past_seqlen == 0:
|
1390 |
-
return seqlen
|
1391 |
-
if past_key_value.attention_layer_idx is None:
|
1392 |
-
return seqlen
|
1393 |
-
if self.mamba.layer_idx < past_key_value.attention_layer_idx:
|
1394 |
-
return past_seqlen + 1
|
1395 |
-
return past_seqlen
|
1396 |
-
|
1397 |
|
1398 |
JAMBA_START_DOCSTRING = r"""
|
1399 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
@@ -1416,7 +1247,6 @@ JAMBA_START_DOCSTRING = r"""
|
|
1416 |
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
|
1417 |
JAMBA_START_DOCSTRING,
|
1418 |
)
|
1419 |
-
# Adapted from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Jamba
|
1420 |
class JambaPreTrainedModel(PreTrainedModel):
|
1421 |
config_class = JambaConfig
|
1422 |
base_model_prefix = "model"
|
@@ -1438,42 +1268,6 @@ class JambaPreTrainedModel(PreTrainedModel):
|
|
1438 |
if module.padding_idx is not None:
|
1439 |
module.weight.data[module.padding_idx].zero_()
|
1440 |
|
1441 |
-
@staticmethod
|
1442 |
-
def _convert_to_standard_cache(
|
1443 |
-
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
1444 |
-
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
1445 |
-
"""
|
1446 |
-
Standardizes the format of the cache so as to match most implementations, i.e. have the seqlen as the third dim
|
1447 |
-
also for mamba layers
|
1448 |
-
"""
|
1449 |
-
attn_layer_index = [k.shape == v.shape for k, v in past_key_value].index(True)
|
1450 |
-
seqlen = past_key_value[attn_layer_index][0].shape[2]
|
1451 |
-
standard_past_key_value = ()
|
1452 |
-
for k, v in past_key_value:
|
1453 |
-
if k.shape != v.shape:
|
1454 |
-
# mamba layer
|
1455 |
-
# expand doesn't use more memory, so it's fine to do it here
|
1456 |
-
standard_past_key_value += ((k.expand(-1, -1, seqlen, -1), v.expand(-1, -1, seqlen, -1)),)
|
1457 |
-
else:
|
1458 |
-
standard_past_key_value += ((k, v),)
|
1459 |
-
return standard_past_key_value
|
1460 |
-
|
1461 |
-
@staticmethod
|
1462 |
-
def _convert_to_jamba_cache(
|
1463 |
-
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
|
1464 |
-
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
1465 |
-
"""
|
1466 |
-
Converts the cache to the format expected by Jamba, i.e. dummy seqlen dimesion with size 1 for mamba layers
|
1467 |
-
"""
|
1468 |
-
jamba_past_key_value = ()
|
1469 |
-
for k, v in past_key_value:
|
1470 |
-
if k.shape != v.shape:
|
1471 |
-
# mamba layer
|
1472 |
-
jamba_past_key_value += ((k[:, :, :1, :], v[:, :, :1, :]),)
|
1473 |
-
else:
|
1474 |
-
jamba_past_key_value += ((k, v),)
|
1475 |
-
return jamba_past_key_value
|
1476 |
-
|
1477 |
|
1478 |
JAMBA_INPUTS_DOCSTRING = r"""
|
1479 |
Args:
|
@@ -1510,17 +1304,14 @@ JAMBA_INPUTS_DOCSTRING = r"""
|
|
1510 |
config.n_positions - 1]`.
|
1511 |
|
1512 |
[What are position IDs?](../glossary#position-ids)
|
1513 |
-
past_key_values (`
|
1514 |
-
|
1515 |
-
|
1516 |
-
|
1517 |
-
|
1518 |
-
and
|
1519 |
-
|
1520 |
-
the
|
1521 |
-
|
1522 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and convolution and
|
1523 |
-
ssm states in the mamba blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1524 |
|
1525 |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
|
1526 |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
@@ -1543,8 +1334,14 @@ JAMBA_INPUTS_DOCSTRING = r"""
|
|
1543 |
should not be returned during inference.
|
1544 |
return_dict (`bool`, *optional*):
|
1545 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
|
|
|
|
|
|
|
1546 |
"""
|
1547 |
|
|
|
|
|
1548 |
|
1549 |
@add_start_docstrings(
|
1550 |
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
|
@@ -1565,35 +1362,10 @@ class JambaModel(JambaPreTrainedModel):
|
|
1565 |
self.vocab_size = config.vocab_size
|
1566 |
|
1567 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1568 |
-
|
1569 |
-
# init each model layer, decide if it's mamba/attention and has experts or not
|
1570 |
decoder_layers = []
|
1571 |
for i in range(config.num_hidden_layers):
|
1572 |
-
|
1573 |
-
|
1574 |
-
|
1575 |
-
num_experts = self.config.num_experts if is_expert else 1
|
1576 |
-
if is_attn:
|
1577 |
-
decoder_layers.append(JambaAttentionDecoderLayer(config, num_experts=num_experts, layer_idx=i))
|
1578 |
-
else:
|
1579 |
-
decoder_layers.append(JambaMambaDecoderLayer(config, num_experts=num_experts, layer_idx=i))
|
1580 |
-
|
1581 |
-
if not any(isinstance(layer, JambaAttentionDecoderLayer) for layer in decoder_layers):
|
1582 |
-
raise ValueError("At least one layer in the decoder must be an attention layer")
|
1583 |
-
self._attn_layer_index = [isinstance(layer, JambaAttentionDecoderLayer) for layer in decoder_layers].index(
|
1584 |
-
True
|
1585 |
-
)
|
1586 |
-
|
1587 |
-
if not any(isinstance(layer, JambaMambaDecoderLayer) for layer in decoder_layers):
|
1588 |
-
raise ValueError("At least one layer in the decoder must be a Mamba layer")
|
1589 |
-
self._mamba_layer_index = [isinstance(layer, JambaMambaDecoderLayer) for layer in decoder_layers].index(True)
|
1590 |
-
|
1591 |
-
if (
|
1592 |
-
decoder_layers[self._mamba_layer_index].mamba.ssm_state_size
|
1593 |
-
== decoder_layers[self._mamba_layer_index].mamba.conv_kernel_size
|
1594 |
-
):
|
1595 |
-
raise ValueError("Mamba state size and convolution size must be different")
|
1596 |
-
|
1597 |
self.layers = nn.ModuleList(decoder_layers)
|
1598 |
|
1599 |
self._attn_implementation = config._attn_implementation
|
@@ -1609,20 +1381,20 @@ class JambaModel(JambaPreTrainedModel):
|
|
1609 |
def set_input_embeddings(self, value):
|
1610 |
self.embed_tokens = value
|
1611 |
|
1612 |
-
# Ignore copy
|
1613 |
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
|
1614 |
def forward(
|
1615 |
self,
|
1616 |
input_ids: torch.LongTensor = None,
|
1617 |
attention_mask: Optional[torch.Tensor] = None,
|
1618 |
position_ids: Optional[torch.LongTensor] = None,
|
1619 |
-
past_key_values: Optional[
|
1620 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1621 |
use_cache: Optional[bool] = None,
|
1622 |
output_attentions: Optional[bool] = None,
|
1623 |
output_hidden_states: Optional[bool] = None,
|
1624 |
output_router_logits: Optional[bool] = None,
|
1625 |
return_dict: Optional[bool] = None,
|
|
|
1626 |
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1627 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1628 |
output_router_logits = (
|
@@ -1635,85 +1407,37 @@ class JambaModel(JambaPreTrainedModel):
|
|
1635 |
|
1636 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1637 |
|
1638 |
-
|
1639 |
-
|
1640 |
-
|
1641 |
-
|
1642 |
-
batch_size, seq_length = input_ids.shape
|
1643 |
-
elif inputs_embeds is not None:
|
1644 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
1645 |
-
else:
|
1646 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1647 |
-
|
1648 |
-
past_key_values_length = 0
|
1649 |
-
|
1650 |
-
if self.gradient_checkpointing and self.training:
|
1651 |
-
if use_cache:
|
1652 |
-
logger.warning_once(
|
1653 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1654 |
-
)
|
1655 |
-
use_cache = False
|
1656 |
-
|
1657 |
-
if use_cache:
|
1658 |
-
if isinstance(past_key_values, Cache) and not isinstance(
|
1659 |
-
past_key_values, HybridMambaAttentionDynamicCache
|
1660 |
-
):
|
1661 |
-
past_key_values = HybridMambaAttentionDynamicCache.from_legacy_cache(past_key_values.to_legacy_cache())
|
1662 |
-
use_legacy_cache = not isinstance(past_key_values, HybridMambaAttentionDynamicCache)
|
1663 |
-
if use_legacy_cache:
|
1664 |
-
past_key_values = HybridMambaAttentionDynamicCache.from_legacy_cache(past_key_values)
|
1665 |
-
past_key_values_length = past_key_values.get_usable_length(seq_length, self._attn_layer_index)
|
1666 |
|
1667 |
-
if
|
1668 |
-
|
1669 |
-
|
1670 |
-
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1671 |
)
|
1672 |
-
|
1673 |
-
else:
|
1674 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
1675 |
|
1676 |
if inputs_embeds is None:
|
1677 |
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
1678 |
|
1679 |
-
if
|
1680 |
-
|
1681 |
-
|
1682 |
-
|
1683 |
-
"You are attempting to perform batched generation with padding_side='right'"
|
1684 |
-
" this may lead to unexpected behaviour for Flash Attention version of Jamba. Make sure to "
|
1685 |
-
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1686 |
-
)
|
1687 |
-
|
1688 |
-
if self._attn_implementation == "flash_attention_2":
|
1689 |
-
# 2d mask is passed through the layers
|
1690 |
-
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1691 |
-
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1692 |
-
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1693 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
1694 |
-
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1695 |
-
attention_mask,
|
1696 |
-
(batch_size, seq_length),
|
1697 |
-
inputs_embeds,
|
1698 |
-
past_key_values_length,
|
1699 |
-
)
|
1700 |
-
else:
|
1701 |
-
# 4d mask is passed through the layers
|
1702 |
-
attention_mask = _prepare_4d_causal_attention_mask(
|
1703 |
-
attention_mask,
|
1704 |
-
(batch_size, seq_length),
|
1705 |
-
inputs_embeds,
|
1706 |
-
past_key_values_length,
|
1707 |
-
sliding_window=self.config.sliding_window,
|
1708 |
)
|
1709 |
|
1710 |
-
|
|
|
|
|
|
|
|
|
|
|
1711 |
|
1712 |
-
# decoder layers
|
1713 |
all_hidden_states = () if output_hidden_states else None
|
1714 |
all_self_attns = () if output_attentions else None
|
1715 |
all_router_logits = () if output_router_logits else None
|
1716 |
-
next_decoder_cache = None
|
1717 |
|
1718 |
for decoder_layer in self.layers:
|
1719 |
if output_hidden_states:
|
@@ -1723,34 +1447,37 @@ class JambaModel(JambaPreTrainedModel):
|
|
1723 |
layer_outputs = self._gradient_checkpointing_func(
|
1724 |
decoder_layer.__call__,
|
1725 |
hidden_states,
|
1726 |
-
|
1727 |
position_ids,
|
1728 |
past_key_values,
|
1729 |
output_attentions,
|
1730 |
output_router_logits,
|
1731 |
use_cache,
|
|
|
1732 |
)
|
1733 |
else:
|
1734 |
layer_outputs = decoder_layer(
|
1735 |
hidden_states,
|
1736 |
-
attention_mask=
|
1737 |
position_ids=position_ids,
|
1738 |
past_key_value=past_key_values,
|
1739 |
output_attentions=output_attentions,
|
1740 |
output_router_logits=output_router_logits,
|
1741 |
use_cache=use_cache,
|
|
|
1742 |
)
|
1743 |
|
1744 |
hidden_states = layer_outputs[0]
|
1745 |
|
1746 |
-
if use_cache:
|
1747 |
-
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1748 |
-
|
1749 |
if output_attentions:
|
1750 |
-
|
|
|
|
|
1751 |
|
1752 |
if output_router_logits:
|
1753 |
-
|
|
|
|
|
1754 |
|
1755 |
hidden_states = self.final_layernorm(hidden_states)
|
1756 |
|
@@ -1758,9 +1485,10 @@ class JambaModel(JambaPreTrainedModel):
|
|
1758 |
if output_hidden_states:
|
1759 |
all_hidden_states += (hidden_states,)
|
1760 |
|
1761 |
-
|
1762 |
-
|
1763 |
-
|
|
|
1764 |
|
1765 |
if not return_dict:
|
1766 |
return tuple(
|
@@ -1776,6 +1504,41 @@ class JambaModel(JambaPreTrainedModel):
|
|
1776 |
router_logits=all_router_logits,
|
1777 |
)
|
1778 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1779 |
|
1780 |
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Jamba
|
1781 |
class JambaForCausalLM(JambaPreTrainedModel):
|
@@ -1818,7 +1581,7 @@ class JambaForCausalLM(JambaPreTrainedModel):
|
|
1818 |
input_ids: torch.LongTensor = None,
|
1819 |
attention_mask: Optional[torch.Tensor] = None,
|
1820 |
position_ids: Optional[torch.LongTensor] = None,
|
1821 |
-
past_key_values: Optional[
|
1822 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1823 |
labels: Optional[torch.LongTensor] = None,
|
1824 |
use_cache: Optional[bool] = None,
|
@@ -1826,7 +1589,8 @@ class JambaForCausalLM(JambaPreTrainedModel):
|
|
1826 |
output_hidden_states: Optional[bool] = None,
|
1827 |
output_router_logits: Optional[bool] = None,
|
1828 |
return_dict: Optional[bool] = None,
|
1829 |
-
|
|
|
1830 |
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1831 |
r"""
|
1832 |
Args:
|
@@ -1835,12 +1599,28 @@ class JambaForCausalLM(JambaPreTrainedModel):
|
|
1835 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1836 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1837 |
|
1838 |
-
|
1839 |
-
|
1840 |
-
logits are needed for generation, and calculating them only for that token
|
1841 |
-
which becomes pretty significant for long sequences.
|
1842 |
|
1843 |
Returns:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1844 |
```"""
|
1845 |
|
1846 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
@@ -1864,14 +1644,15 @@ class JambaForCausalLM(JambaPreTrainedModel):
|
|
1864 |
output_attentions=output_attentions,
|
1865 |
output_hidden_states=output_hidden_states,
|
1866 |
output_router_logits=output_router_logits,
|
|
|
1867 |
return_dict=return_dict,
|
1868 |
)
|
1869 |
|
1870 |
hidden_states = outputs[0]
|
1871 |
-
if
|
1872 |
logits = self.lm_head(hidden_states)
|
1873 |
else:
|
1874 |
-
logits = self.lm_head(hidden_states[..., -
|
1875 |
logits = logits.float()
|
1876 |
|
1877 |
loss = None
|
@@ -1921,27 +1702,15 @@ class JambaForCausalLM(JambaPreTrainedModel):
|
|
1921 |
attention_mask=None,
|
1922 |
inputs_embeds=None,
|
1923 |
output_router_logits=False,
|
|
|
1924 |
**kwargs,
|
1925 |
):
|
1926 |
-
|
1927 |
-
if past_key_values is not None:
|
1928 |
-
# the cache may be in the stardard format (e.g. in contrastive search), convert to Jamba's format if needed
|
1929 |
-
if isinstance(past_key_values, Tuple):
|
1930 |
-
if past_key_values[self.model._mamba_layer_index][0].shape[2] > 1:
|
1931 |
-
past_key_values = self._convert_to_jamba_cache(past_key_values)
|
1932 |
-
|
1933 |
-
if isinstance(past_key_values, Cache):
|
1934 |
-
if not isinstance(past_key_values, HybridMambaAttentionDynamicCache):
|
1935 |
-
past_key_values = HybridMambaAttentionDynamicCache.from_legacy_cache(
|
1936 |
-
past_key_values.to_legacy_cache()
|
1937 |
-
)
|
1938 |
-
cache_length = past_key_values.get_seq_length()
|
1939 |
-
past_length = past_key_values.seen_tokens
|
1940 |
-
max_cache_length = past_key_values.get_max_length()
|
1941 |
-
else:
|
1942 |
-
cache_length = past_length = past_key_values[self.model._attn_layer_index][0].shape[2]
|
1943 |
-
max_cache_length = None
|
1944 |
|
|
|
|
|
|
|
|
|
1945 |
# Keep only the unprocessed tokens:
|
1946 |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1947 |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
@@ -1958,20 +1727,24 @@ class JambaForCausalLM(JambaPreTrainedModel):
|
|
1958 |
if (
|
1959 |
max_cache_length is not None
|
1960 |
and attention_mask is not None
|
1961 |
-
and
|
1962 |
):
|
1963 |
attention_mask = attention_mask[:, -max_cache_length:]
|
|
|
|
|
|
|
|
|
1964 |
|
1965 |
position_ids = kwargs.get("position_ids", None)
|
1966 |
if attention_mask is not None and position_ids is None:
|
1967 |
# create position_ids on the fly for batch generation
|
1968 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
1969 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
1970 |
-
if
|
1971 |
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1972 |
|
1973 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1974 |
-
if inputs_embeds is not None and
|
1975 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
1976 |
else:
|
1977 |
model_inputs = {"input_ids": input_ids}
|
@@ -1983,20 +1756,12 @@ class JambaForCausalLM(JambaPreTrainedModel):
|
|
1983 |
"use_cache": kwargs.get("use_cache"),
|
1984 |
"attention_mask": attention_mask,
|
1985 |
"output_router_logits": output_router_logits,
|
1986 |
-
"
|
|
|
1987 |
}
|
1988 |
)
|
1989 |
return model_inputs
|
1990 |
|
1991 |
-
@staticmethod
|
1992 |
-
def _reorder_cache(past_key_values, beam_idx):
|
1993 |
-
reordered_past = ()
|
1994 |
-
for layer_past in past_key_values:
|
1995 |
-
reordered_past += (
|
1996 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1997 |
-
)
|
1998 |
-
return reordered_past
|
1999 |
-
|
2000 |
|
2001 |
@add_start_docstrings(
|
2002 |
"""
|
|
|
20 |
""" PyTorch Jamba model."""
|
21 |
import inspect
|
22 |
import math
|
|
|
|
|
23 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
24 |
|
25 |
import torch
|
|
|
29 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
|
31 |
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import DynamicCache # we need __iter__ and __len__ of pkv
|
33 |
from transformers.modeling_attn_mask_utils import (
|
34 |
+
AttentionMaskConverter,
|
|
|
35 |
)
|
36 |
from transformers.modeling_outputs import (
|
37 |
MoeCausalLMOutputWithPast,
|
|
|
39 |
SequenceClassifierOutputWithPast,
|
40 |
)
|
41 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
42 |
from transformers.utils import (
|
43 |
add_start_docstrings,
|
44 |
add_start_docstrings_to_model_forward,
|
|
|
46 |
logging,
|
47 |
replace_return_docstrings,
|
48 |
)
|
49 |
+
from transformers.utils.import_utils import (
|
50 |
+
is_causal_conv1d_available,
|
51 |
+
is_flash_attn_2_available,
|
52 |
+
is_mamba_ssm_available,
|
53 |
+
)
|
54 |
from .configuration_jamba import JambaConfig
|
55 |
|
56 |
|
57 |
+
# try except block so it'll work with trust_remote_code.
|
58 |
try:
|
59 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
60 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
|
63 |
except ImportError:
|
64 |
pass
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
# try except block so it'll work with trust_remote_code.
|
68 |
try:
|
69 |
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
|
70 |
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
71 |
except ImportError:
|
72 |
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
73 |
|
74 |
+
# try except block so it'll work with trust_remote_code.
|
75 |
try:
|
76 |
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
77 |
except ImportError:
|
|
|
87 |
_CONFIG_FOR_DOC = "JambaConfig"
|
88 |
|
89 |
|
90 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func with gate->router
|
91 |
def load_balancing_loss_func(
|
92 |
+
router_logits: torch.Tensor,
|
93 |
+
num_experts: torch.Tensor = None,
|
94 |
+
top_k=2,
|
95 |
+
attention_mask: Optional[torch.Tensor] = None,
|
96 |
) -> float:
|
97 |
r"""
|
98 |
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
|
|
102 |
experts is too unbalanced.
|
103 |
|
104 |
Args:
|
105 |
+
router_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
106 |
Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of
|
107 |
shape [batch_size X sequence_length, num_experts].
|
108 |
attention_mask (`torch.Tensor`, None):
|
|
|
114 |
Returns:
|
115 |
The auxiliary loss.
|
116 |
"""
|
117 |
+
if router_logits is None or not isinstance(router_logits, tuple):
|
118 |
return 0
|
119 |
|
120 |
+
if isinstance(router_logits, tuple):
|
121 |
+
compute_device = router_logits[0].device
|
122 |
+
concatenated_router_logits = torch.cat(
|
123 |
+
[layer_router.to(compute_device) for layer_router in router_logits], dim=0
|
124 |
)
|
125 |
|
126 |
+
routing_weights = torch.nn.functional.softmax(concatenated_router_logits, dim=-1)
|
127 |
|
128 |
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
129 |
|
|
|
137 |
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
138 |
else:
|
139 |
batch_size, sequence_length = attention_mask.shape
|
140 |
+
num_hidden_layers = concatenated_router_logits.shape[0] // (batch_size * sequence_length)
|
141 |
|
142 |
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
143 |
expert_attention_mask = (
|
|
|
213 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
214 |
|
215 |
|
216 |
+
class HybridMambaAttentionDynamicCache(DynamicCache):
|
217 |
+
"""
|
218 |
+
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
|
219 |
+
(which has a constant shape regardless of seq_len).
|
220 |
+
|
221 |
+
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
|
222 |
+
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
|
223 |
+
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
|
224 |
+
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
|
225 |
+
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
|
226 |
+
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
|
227 |
+
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
|
231 |
+
self.dtype = dtype
|
232 |
+
self.layers_block_type = config.layers_block_type
|
233 |
+
self.has_previous_state = False # only used by mamba
|
234 |
+
intermediate_size = config.mamba_expand * config.hidden_size
|
235 |
+
ssm_state_size = config.mamba_d_state
|
236 |
+
conv_kernel_size = config.mamba_d_conv
|
237 |
+
self.conv_states = []
|
238 |
+
self.ssm_states = []
|
239 |
+
for i in range(config.num_hidden_layers):
|
240 |
+
if self.layers_block_type[i] == "mamba":
|
241 |
+
self.conv_states += [
|
242 |
+
torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
|
243 |
+
]
|
244 |
+
self.ssm_states += [
|
245 |
+
torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
|
246 |
+
]
|
247 |
+
else:
|
248 |
+
self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
|
249 |
+
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
|
250 |
+
|
251 |
+
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
|
252 |
+
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
|
253 |
+
|
254 |
+
def update(
|
255 |
+
self,
|
256 |
+
key_states: torch.Tensor,
|
257 |
+
value_states: torch.Tensor,
|
258 |
+
layer_idx: int,
|
259 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
260 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
261 |
+
# Update the cache
|
262 |
+
if self.key_cache[layer_idx].shape[-1] == 0:
|
263 |
+
self.key_cache[layer_idx] = key_states
|
264 |
+
self.value_cache[layer_idx] = value_states
|
265 |
+
else:
|
266 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
|
267 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
|
268 |
+
|
269 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
270 |
+
|
271 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
272 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
273 |
+
for layer_idx in range(len(self.key_cache)):
|
274 |
+
device = self.key_cache[layer_idx].device
|
275 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
276 |
+
device = self.value_cache[layer_idx].device
|
277 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
278 |
+
|
279 |
+
device = self.conv_states[layer_idx].device
|
280 |
+
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
|
281 |
+
device = self.ssm_states[layer_idx].device
|
282 |
+
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
|
283 |
+
|
284 |
+
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
285 |
+
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
|
286 |
+
|
287 |
+
@classmethod
|
288 |
+
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
289 |
+
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
|
290 |
+
|
291 |
+
|
292 |
# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Jamba
|
293 |
class JambaAttention(nn.Module):
|
294 |
"""
|
|
|
325 |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
326 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
327 |
|
|
|
|
|
|
|
328 |
def forward(
|
329 |
self,
|
330 |
hidden_states: torch.Tensor,
|
331 |
attention_mask: Optional[torch.Tensor] = None,
|
332 |
position_ids: Optional[torch.LongTensor] = None,
|
333 |
+
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
334 |
output_attentions: bool = False,
|
335 |
use_cache: bool = False,
|
336 |
+
cache_position: Optional[torch.LongTensor] = None,
|
337 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
|
|
|
|
|
338 |
bsz, q_len, _ = hidden_states.size()
|
339 |
|
340 |
query_states = self.q_proj(hidden_states)
|
|
|
345 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
346 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
if past_key_value is not None:
|
349 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
350 |
|
|
|
354 |
|
355 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
356 |
|
357 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
358 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
359 |
+
attn_weights = attn_weights + causal_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
# upcast attention to fp32
|
362 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
|
402 |
hidden_states: torch.Tensor,
|
403 |
attention_mask: Optional[torch.Tensor] = None,
|
404 |
position_ids: Optional[torch.LongTensor] = None,
|
405 |
+
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
406 |
output_attentions: bool = False,
|
407 |
use_cache: bool = False,
|
408 |
+
cache_position: Optional[torch.LongTensor] = None,
|
409 |
**kwargs,
|
410 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
bsz, q_len, _ = hidden_states.size()
|
412 |
|
413 |
query_states = self.q_proj(hidden_states)
|
414 |
key_states = self.k_proj(hidden_states)
|
415 |
value_states = self.v_proj(hidden_states)
|
416 |
|
417 |
+
# Flash attention requires the input to have the shape
|
418 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
419 |
+
# therefore we just need to keep the original shape
|
420 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
421 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
422 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
423 |
|
424 |
+
kv_seq_len = cache_position[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
|
426 |
use_sliding_windows = (
|
427 |
_flash_supports_window_size
|
|
|
437 |
|
438 |
if past_key_value is not None:
|
439 |
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
440 |
+
cache_has_contents = cache_position[0] > 0
|
441 |
if (
|
442 |
getattr(self.config, "sliding_window", None) is not None
|
443 |
and kv_seq_len > self.config.sliding_window
|
|
|
539 |
attention_mask (`torch.Tensor`):
|
540 |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
541 |
position of padding tokens and 1 for the position of non-padding tokens.
|
542 |
+
dropout (`float`, *optional*):
|
543 |
Attention dropout
|
544 |
softmax_scale (`float`, *optional*):
|
545 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
|
614 |
|
615 |
return attn_output
|
616 |
|
617 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralFlashAttention2._upad_input
|
618 |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
619 |
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
620 |
|
|
|
672 |
hidden_states: torch.Tensor,
|
673 |
attention_mask: Optional[torch.Tensor] = None,
|
674 |
position_ids: Optional[torch.LongTensor] = None,
|
675 |
+
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
676 |
output_attentions: bool = False,
|
677 |
use_cache: bool = False,
|
678 |
+
cache_position: Optional[torch.LongTensor] = None,
|
679 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
680 |
if output_attentions:
|
681 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
|
702 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
703 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
704 |
|
|
|
|
|
|
|
|
|
705 |
if past_key_value is not None:
|
706 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
707 |
|
708 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
709 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
710 |
|
711 |
+
causal_mask = attention_mask
|
712 |
if attention_mask is not None:
|
713 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
|
|
|
|
|
|
714 |
|
715 |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
716 |
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
|
|
723 |
query_states,
|
724 |
key_states,
|
725 |
value_states,
|
726 |
+
attn_mask=causal_mask,
|
727 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
728 |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
729 |
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
|
|
744 |
}
|
745 |
|
746 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
747 |
# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
|
748 |
class JambaMambaMixer(nn.Module):
|
749 |
"""
|
|
|
775 |
|
776 |
self.activation = config.hidden_act
|
777 |
self.act = ACT2FN[config.hidden_act]
|
|
|
778 |
|
779 |
self.use_fast_kernels = config.use_mamba_kernels
|
780 |
|
|
|
794 |
self.D = nn.Parameter(torch.ones(self.intermediate_size))
|
795 |
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
|
796 |
|
797 |
+
self.dt_layernorm = JambaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps)
|
798 |
+
self.b_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
|
799 |
+
self.c_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
|
|
|
|
|
|
|
|
|
|
|
800 |
|
801 |
if not is_fast_path_available:
|
802 |
logger.warning_once(
|
|
|
805 |
" https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
|
806 |
)
|
807 |
|
808 |
+
def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: HybridMambaAttentionDynamicCache = None):
|
809 |
+
batch_size, seq_len, _ = hidden_states.shape
|
810 |
+
use_precomputed_states = (
|
811 |
+
cache_params is not None
|
812 |
+
and cache_params.has_previous_state
|
813 |
+
and seq_len == 1
|
814 |
+
and cache_params.conv_states[self.layer_idx].shape[0]
|
815 |
+
== cache_params.ssm_states[self.layer_idx].shape[0]
|
816 |
+
== batch_size
|
817 |
+
)
|
818 |
# 1. Gated MLP's linear projection
|
819 |
projected_states = self.in_proj(hidden_states).transpose(1, 2)
|
820 |
|
821 |
+
# We can't use `mamba_inner_fn` even if in training and without cache params because we have the
|
822 |
+
# inner layernorms which isn't supported by this fused kernel
|
823 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
824 |
|
825 |
+
# 2. Convolution sequence transformation
|
826 |
+
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
|
827 |
+
if use_precomputed_states:
|
828 |
+
hidden_states = causal_conv1d_update(
|
829 |
+
hidden_states.squeeze(-1),
|
830 |
+
cache_params.conv_states[self.layer_idx],
|
831 |
+
conv_weights,
|
832 |
+
self.conv1d.bias,
|
833 |
+
self.activation,
|
834 |
+
)
|
835 |
+
hidden_states = hidden_states.unsqueeze(-1)
|
836 |
else:
|
837 |
+
if cache_params is not None:
|
838 |
+
conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
|
839 |
+
cache_params.conv_states[self.layer_idx].copy_(conv_states)
|
840 |
+
hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation)
|
841 |
+
|
842 |
+
# 3. State Space Model sequence transformation
|
843 |
+
# 3.a. input varying initialization of time_step, B and C
|
844 |
+
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
845 |
+
time_step, B, C = torch.split(
|
846 |
+
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
847 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
848 |
|
849 |
+
time_step = self.dt_layernorm(time_step)
|
850 |
+
B = self.b_layernorm(B)
|
851 |
+
C = self.c_layernorm(C)
|
852 |
+
|
853 |
+
# Here we need to apply dt_proj without the bias, as the bias is added in the selective scan kernel.
|
854 |
+
# This is a hack to apply dt_proj while still using the forward pass of `torch.nn.Linear`, which is needed
|
855 |
+
# in order to make quantization work. Quantization code replaces `torch.nn.Linear` layers with quantized
|
856 |
+
# linear layers, and requires to call the forward pass directly.
|
857 |
+
# The original code here was: ```discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)```
|
858 |
+
time_proj_bias = self.dt_proj.bias
|
859 |
+
self.dt_proj.bias = None
|
860 |
+
discrete_time_step = self.dt_proj(time_step).transpose(1, 2)
|
861 |
+
self.dt_proj.bias = time_proj_bias
|
862 |
+
|
863 |
+
A = -torch.exp(self.A_log.float())
|
864 |
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
865 |
+
time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None
|
866 |
+
if use_precomputed_states:
|
867 |
+
scan_outputs = selective_state_update(
|
868 |
+
cache_params.ssm_states[self.layer_idx],
|
869 |
+
hidden_states[..., 0],
|
870 |
+
discrete_time_step[..., 0],
|
871 |
+
A,
|
872 |
+
B[:, 0],
|
873 |
+
C[:, 0],
|
874 |
+
self.D,
|
875 |
+
gate[..., 0],
|
876 |
+
time_proj_bias,
|
877 |
+
dt_softplus=True,
|
878 |
+
).unsqueeze(-1)
|
879 |
+
else:
|
880 |
+
scan_outputs, ssm_state = selective_scan_fn(
|
881 |
+
hidden_states,
|
882 |
+
discrete_time_step,
|
883 |
+
A,
|
884 |
+
B.transpose(1, 2),
|
885 |
+
C.transpose(1, 2),
|
886 |
+
self.D.float(),
|
887 |
+
gate,
|
888 |
+
time_proj_bias,
|
889 |
+
delta_softplus=True,
|
890 |
+
return_last_state=True,
|
891 |
)
|
892 |
+
if ssm_state is not None and cache_params is not None:
|
893 |
+
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
894 |
+
|
895 |
+
# 4. Final linear projection
|
896 |
+
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
897 |
|
|
|
|
|
898 |
return contextualized_states
|
899 |
|
900 |
# fmt: off
|
901 |
+
def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCache = None):
|
902 |
batch_size, seq_len, _ = input_states.shape
|
903 |
dtype = input_states.dtype
|
904 |
# 1. Gated MLP's linear projection
|
905 |
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
|
906 |
hidden_states, gate = projected_states.chunk(2, dim=1)
|
907 |
|
908 |
+
use_cache = isinstance(cache_params,HybridMambaAttentionDynamicCache)
|
909 |
# 2. Convolution sequence transformation
|
910 |
+
if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size:
|
911 |
if self.training:
|
912 |
# In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass
|
913 |
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
914 |
else:
|
915 |
ssm_state = cache_params.ssm_states[self.layer_idx]
|
916 |
|
917 |
+
if cache_params.has_previous_state and seq_len == 1 and \
|
918 |
+
cache_params.conv_states[self.layer_idx].shape[0] == batch_size:
|
919 |
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
920 |
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
921 |
conv_state[:, :, -1] = hidden_states[:, :, 0]
|
922 |
+
cache_params.conv_states[self.layer_idx] = conv_state
|
923 |
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
924 |
if self.use_conv_bias:
|
925 |
hidden_states += self.conv1d.bias
|
|
|
929 |
hidden_states,
|
930 |
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
931 |
)
|
932 |
+
cache_params.conv_states[self.layer_idx] = conv_state
|
933 |
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
934 |
else:
|
935 |
ssm_state = torch.zeros(
|
|
|
944 |
time_step, B, C = torch.split(
|
945 |
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
946 |
)
|
947 |
+
|
948 |
+
time_step = self.dt_layernorm(time_step)
|
949 |
+
B = self.b_layernorm(B)
|
950 |
+
C = self.c_layernorm(C)
|
951 |
+
|
952 |
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
|
953 |
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
|
954 |
|
|
|
968 |
scan_output = scan_output + (hidden_states * self.D[None, :, None])
|
969 |
scan_output = (scan_output * self.act(gate))
|
970 |
|
971 |
+
if use_cache:
|
972 |
+
cache_params.ssm_states[self.layer_idx] = ssm_state
|
973 |
|
974 |
# 4. Final linear projection
|
975 |
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
|
976 |
return contextualized_states
|
977 |
# fmt: on
|
978 |
|
979 |
+
def forward(self, hidden_states, cache_params: HybridMambaAttentionDynamicCache = None):
|
980 |
if self.use_fast_kernels:
|
981 |
if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
|
982 |
raise ValueError(
|
|
|
985 |
return self.cuda_kernels_forward(hidden_states, cache_params)
|
986 |
return self.slow_forward(hidden_states, cache_params)
|
987 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
988 |
|
989 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Jamba
|
990 |
class JambaMLP(nn.Module):
|
991 |
+
def __init__(self, config):
|
992 |
super().__init__()
|
993 |
+
self.config = config
|
994 |
+
self.hidden_size = config.hidden_size
|
995 |
+
self.intermediate_size = config.intermediate_size
|
996 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
997 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
998 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
|
999 |
self.act_fn = ACT2FN[config.hidden_act]
|
1000 |
|
1001 |
def forward(self, x):
|
|
|
1015 |
and memory on padding.
|
1016 |
"""
|
1017 |
|
1018 |
+
def __init__(self, config: JambaConfig):
|
1019 |
super().__init__()
|
1020 |
self.hidden_dim = config.hidden_size
|
1021 |
self.ffn_dim = config.intermediate_size
|
1022 |
+
self.num_experts = config.num_experts
|
1023 |
+
self.top_k = config.num_experts_per_tok
|
1024 |
|
1025 |
+
self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1026 |
self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)])
|
1027 |
|
1028 |
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
1029 |
""" """
|
1030 |
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
1031 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1032 |
hidden_states = hidden_states.view(-1, hidden_dim)
|
1033 |
# router_logits: (batch * sequence_length, n_experts)
|
1034 |
router_logits = self.router(hidden_states)
|
|
|
1053 |
if top_x.shape[0] == 0:
|
1054 |
continue
|
1055 |
|
|
|
|
|
|
|
|
|
1056 |
# Index the correct hidden states and compute the expert hidden state for
|
1057 |
# the current expert. We need to make sure to multiply the output hidden
|
1058 |
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
1059 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
1060 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
1061 |
|
1062 |
# However `index_add_` only support torch tensors for indexing so we'll use
|
1063 |
# the `top_x` tensor here.
|
|
|
1067 |
|
1068 |
|
1069 |
class JambaAttentionDecoderLayer(nn.Module):
|
1070 |
+
def __init__(self, config: JambaConfig, layer_idx: int):
|
1071 |
super().__init__()
|
1072 |
+
num_experts = config.layers_num_experts[layer_idx]
|
1073 |
self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
1074 |
|
1075 |
+
ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
|
1076 |
+
self.feed_forward = ffn_layer_class(config)
|
1077 |
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1078 |
+
self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1079 |
|
1080 |
def forward(
|
1081 |
self,
|
1082 |
hidden_states: torch.Tensor,
|
1083 |
attention_mask: Optional[torch.Tensor] = None,
|
1084 |
position_ids: Optional[torch.LongTensor] = None,
|
1085 |
+
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
1086 |
output_attentions: Optional[bool] = False,
|
1087 |
output_router_logits: Optional[bool] = False,
|
1088 |
use_cache: Optional[bool] = False,
|
1089 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1090 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
|
|
|
|
|
1091 |
"""
|
1092 |
Args:
|
1093 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1094 |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1095 |
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1096 |
+
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
|
1097 |
output_attentions (`bool`, *optional*):
|
1098 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1099 |
returned tensors for more detail.
|
|
|
1103 |
use_cache (`bool`, *optional*):
|
1104 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1105 |
(see `past_key_values`).
|
1106 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1107 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1108 |
"""
|
1109 |
|
1110 |
residual = hidden_states
|
|
|
1118 |
past_key_value=past_key_value,
|
1119 |
output_attentions=output_attentions,
|
1120 |
use_cache=use_cache,
|
1121 |
+
cache_position=cache_position,
|
1122 |
)
|
1123 |
|
1124 |
# residual connection after attention
|
1125 |
hidden_states = residual + hidden_states
|
1126 |
|
1127 |
+
# feed-forward (experts/MLP)
|
1128 |
residual = hidden_states
|
1129 |
+
hidden_states = self.pre_ff_layernorm(hidden_states)
|
1130 |
+
ff_outputs = self.feed_forward(hidden_states)
|
1131 |
+
if isinstance(ff_outputs, tuple):
|
1132 |
+
hidden_states, router_logits = ff_outputs
|
1133 |
+
else:
|
1134 |
+
hidden_states, router_logits = ff_outputs, None
|
1135 |
hidden_states = residual + hidden_states
|
1136 |
|
1137 |
outputs = (hidden_states,)
|
|
|
1149 |
|
1150 |
|
1151 |
class JambaMambaDecoderLayer(nn.Module):
|
1152 |
+
def __init__(self, config: JambaConfig, layer_idx: int):
|
1153 |
super().__init__()
|
1154 |
+
num_experts = config.layers_num_experts[layer_idx]
|
1155 |
self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx)
|
1156 |
|
1157 |
+
ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
|
1158 |
+
self.feed_forward = ffn_layer_class(config)
|
1159 |
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1160 |
+
self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1161 |
|
1162 |
def forward(
|
1163 |
self,
|
|
|
1168 |
output_attentions: Optional[bool] = False,
|
1169 |
output_router_logits: Optional[bool] = False,
|
1170 |
use_cache: Optional[bool] = False,
|
1171 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1172 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
|
|
|
|
|
1173 |
"""
|
1174 |
Args:
|
1175 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1176 |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1177 |
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1178 |
+
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
|
1179 |
output_attentions (`bool`, *optional*):
|
1180 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1181 |
returned tensors for more detail.
|
|
|
1185 |
use_cache (`bool`, *optional*):
|
1186 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1187 |
(see `past_key_values`).
|
1188 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1189 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1190 |
"""
|
1191 |
|
1192 |
residual = hidden_states
|
1193 |
|
1194 |
hidden_states = self.input_layernorm(hidden_states)
|
1195 |
|
1196 |
+
hidden_states = self.mamba(
|
1197 |
hidden_states=hidden_states,
|
1198 |
+
cache_params=past_key_value,
|
1199 |
)
|
1200 |
+
self_attn_weights = None
|
|
|
|
|
|
|
1201 |
|
1202 |
# residual connection after mamba
|
1203 |
hidden_states = residual + hidden_states
|
1204 |
|
1205 |
+
# feed-forward (experts/MLP)
|
1206 |
residual = hidden_states
|
1207 |
+
hidden_states = self.pre_ff_layernorm(hidden_states)
|
1208 |
+
ff_outputs = self.feed_forward(hidden_states)
|
1209 |
+
if isinstance(ff_outputs, tuple):
|
1210 |
+
hidden_states, router_logits = ff_outputs
|
1211 |
+
else:
|
1212 |
+
hidden_states, router_logits = ff_outputs, None
|
1213 |
hidden_states = residual + hidden_states
|
1214 |
|
1215 |
outputs = (hidden_states,)
|
|
|
1218 |
outputs += (self_attn_weights,)
|
1219 |
|
1220 |
if use_cache:
|
1221 |
+
outputs += (past_key_value,)
|
1222 |
|
1223 |
if output_router_logits:
|
1224 |
outputs += (router_logits,)
|
1225 |
|
1226 |
return outputs
|
1227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1228 |
|
1229 |
JAMBA_START_DOCSTRING = r"""
|
1230 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
|
1247 |
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
|
1248 |
JAMBA_START_DOCSTRING,
|
1249 |
)
|
|
|
1250 |
class JambaPreTrainedModel(PreTrainedModel):
|
1251 |
config_class = JambaConfig
|
1252 |
base_model_prefix = "model"
|
|
|
1268 |
if module.padding_idx is not None:
|
1269 |
module.weight.data[module.padding_idx].zero_()
|
1270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1271 |
|
1272 |
JAMBA_INPUTS_DOCSTRING = r"""
|
1273 |
Args:
|
|
|
1304 |
config.n_positions - 1]`.
|
1305 |
|
1306 |
[What are position IDs?](../glossary#position-ids)
|
1307 |
+
past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1308 |
+
A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the
|
1309 |
+
self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
|
1310 |
+
`past_key_values` input) to speed up sequential decoding.
|
1311 |
+
Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
|
1312 |
+
Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
|
1313 |
+
`(batch_size, d_inner, d_state)` respectively.
|
1314 |
+
See the `HybridMambaAttentionDynamicCache` class for more details.
|
|
|
|
|
|
|
1315 |
|
1316 |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
|
1317 |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
|
|
1334 |
should not be returned during inference.
|
1335 |
return_dict (`bool`, *optional*):
|
1336 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1337 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1338 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
1339 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
1340 |
+
the complete sequence length.
|
1341 |
"""
|
1342 |
|
1343 |
+
ALL_DECODER_LAYER_TYPES = {"attention": JambaAttentionDecoderLayer, "mamba": JambaMambaDecoderLayer}
|
1344 |
+
|
1345 |
|
1346 |
@add_start_docstrings(
|
1347 |
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
|
|
|
1362 |
self.vocab_size = config.vocab_size
|
1363 |
|
1364 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
|
|
1365 |
decoder_layers = []
|
1366 |
for i in range(config.num_hidden_layers):
|
1367 |
+
layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]]
|
1368 |
+
decoder_layers.append(layer_class(config, layer_idx=i))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1369 |
self.layers = nn.ModuleList(decoder_layers)
|
1370 |
|
1371 |
self._attn_implementation = config._attn_implementation
|
|
|
1381 |
def set_input_embeddings(self, value):
|
1382 |
self.embed_tokens = value
|
1383 |
|
|
|
1384 |
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
|
1385 |
def forward(
|
1386 |
self,
|
1387 |
input_ids: torch.LongTensor = None,
|
1388 |
attention_mask: Optional[torch.Tensor] = None,
|
1389 |
position_ids: Optional[torch.LongTensor] = None,
|
1390 |
+
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
|
1391 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1392 |
use_cache: Optional[bool] = None,
|
1393 |
output_attentions: Optional[bool] = None,
|
1394 |
output_hidden_states: Optional[bool] = None,
|
1395 |
output_router_logits: Optional[bool] = None,
|
1396 |
return_dict: Optional[bool] = None,
|
1397 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1398 |
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1399 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1400 |
output_router_logits = (
|
|
|
1407 |
|
1408 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1409 |
|
1410 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1411 |
+
raise ValueError(
|
1412 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1413 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1414 |
|
1415 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1416 |
+
logger.warning_once(
|
1417 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
|
|
1418 |
)
|
1419 |
+
use_cache = False
|
|
|
|
|
1420 |
|
1421 |
if inputs_embeds is None:
|
1422 |
inputs_embeds = self.embed_tokens(input_ids)
|
1423 |
+
hidden_states = inputs_embeds
|
1424 |
|
1425 |
+
if use_cache and past_key_values is None:
|
1426 |
+
logger.warning_once(
|
1427 |
+
"Jamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
|
1428 |
+
"provided, so no cache will be returned."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1429 |
)
|
1430 |
|
1431 |
+
if cache_position is None:
|
1432 |
+
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
|
1433 |
+
if position_ids is None:
|
1434 |
+
position_ids = cache_position.unsqueeze(0)
|
1435 |
+
|
1436 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
1437 |
|
|
|
1438 |
all_hidden_states = () if output_hidden_states else None
|
1439 |
all_self_attns = () if output_attentions else None
|
1440 |
all_router_logits = () if output_router_logits else None
|
|
|
1441 |
|
1442 |
for decoder_layer in self.layers:
|
1443 |
if output_hidden_states:
|
|
|
1447 |
layer_outputs = self._gradient_checkpointing_func(
|
1448 |
decoder_layer.__call__,
|
1449 |
hidden_states,
|
1450 |
+
causal_mask,
|
1451 |
position_ids,
|
1452 |
past_key_values,
|
1453 |
output_attentions,
|
1454 |
output_router_logits,
|
1455 |
use_cache,
|
1456 |
+
cache_position,
|
1457 |
)
|
1458 |
else:
|
1459 |
layer_outputs = decoder_layer(
|
1460 |
hidden_states,
|
1461 |
+
attention_mask=causal_mask,
|
1462 |
position_ids=position_ids,
|
1463 |
past_key_value=past_key_values,
|
1464 |
output_attentions=output_attentions,
|
1465 |
output_router_logits=output_router_logits,
|
1466 |
use_cache=use_cache,
|
1467 |
+
cache_position=cache_position,
|
1468 |
)
|
1469 |
|
1470 |
hidden_states = layer_outputs[0]
|
1471 |
|
|
|
|
|
|
|
1472 |
if output_attentions:
|
1473 |
+
if layer_outputs[1] is not None:
|
1474 |
+
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
|
1475 |
+
all_self_attns += (layer_outputs[1],)
|
1476 |
|
1477 |
if output_router_logits:
|
1478 |
+
if layer_outputs[-1] is not None:
|
1479 |
+
# append router logits only of expert layers. Regular MLP layers return `None` as the router logits
|
1480 |
+
all_router_logits += (layer_outputs[-1],)
|
1481 |
|
1482 |
hidden_states = self.final_layernorm(hidden_states)
|
1483 |
|
|
|
1485 |
if output_hidden_states:
|
1486 |
all_hidden_states += (hidden_states,)
|
1487 |
|
1488 |
+
if past_key_values and not past_key_values.has_previous_state:
|
1489 |
+
past_key_values.has_previous_state = True
|
1490 |
+
|
1491 |
+
next_cache = None if not use_cache else past_key_values
|
1492 |
|
1493 |
if not return_dict:
|
1494 |
return tuple(
|
|
|
1504 |
router_logits=all_router_logits,
|
1505 |
)
|
1506 |
|
1507 |
+
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
|
1508 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1509 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1510 |
+
return attention_mask
|
1511 |
+
return None
|
1512 |
+
|
1513 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1514 |
+
min_dtype = torch.finfo(dtype).min
|
1515 |
+
sequence_length = input_tensor.shape[1]
|
1516 |
+
target_length = cache_position[-1] + 1
|
1517 |
+
|
1518 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1519 |
+
if sequence_length != 1:
|
1520 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1521 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1522 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1523 |
+
if attention_mask is not None:
|
1524 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1525 |
+
if attention_mask.dim() == 2:
|
1526 |
+
mask_length = attention_mask.shape[-1]
|
1527 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1528 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1529 |
+
|
1530 |
+
if (
|
1531 |
+
self.config._attn_implementation == "sdpa"
|
1532 |
+
and attention_mask is not None
|
1533 |
+
and attention_mask.device.type == "cuda"
|
1534 |
+
):
|
1535 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1536 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1537 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1538 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1539 |
+
|
1540 |
+
return causal_mask
|
1541 |
+
|
1542 |
|
1543 |
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Jamba
|
1544 |
class JambaForCausalLM(JambaPreTrainedModel):
|
|
|
1581 |
input_ids: torch.LongTensor = None,
|
1582 |
attention_mask: Optional[torch.Tensor] = None,
|
1583 |
position_ids: Optional[torch.LongTensor] = None,
|
1584 |
+
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
|
1585 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1586 |
labels: Optional[torch.LongTensor] = None,
|
1587 |
use_cache: Optional[bool] = None,
|
|
|
1589 |
output_hidden_states: Optional[bool] = None,
|
1590 |
output_router_logits: Optional[bool] = None,
|
1591 |
return_dict: Optional[bool] = None,
|
1592 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1593 |
+
num_logits_to_keep: Optional[Union[int, None]] = None,
|
1594 |
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1595 |
r"""
|
1596 |
Args:
|
|
|
1599 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1600 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1601 |
|
1602 |
+
num_logits_to_keep (`int` or `None`, *optional*):
|
1603 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `None`, calculate logits for all
|
1604 |
+
`input_ids`. Only last token logits are needed for generation, and calculating them only for that token
|
1605 |
+
can save memory, which becomes pretty significant for long sequences.
|
1606 |
|
1607 |
Returns:
|
1608 |
+
|
1609 |
+
Example:
|
1610 |
+
|
1611 |
+
```python
|
1612 |
+
>>> from transformers import AutoTokenizer, JambaForCausalLM
|
1613 |
+
|
1614 |
+
>>> model = JambaForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
|
1615 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
|
1616 |
+
|
1617 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1618 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1619 |
+
|
1620 |
+
>>> # Generate
|
1621 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1622 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1623 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1624 |
```"""
|
1625 |
|
1626 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
1644 |
output_attentions=output_attentions,
|
1645 |
output_hidden_states=output_hidden_states,
|
1646 |
output_router_logits=output_router_logits,
|
1647 |
+
cache_position=cache_position,
|
1648 |
return_dict=return_dict,
|
1649 |
)
|
1650 |
|
1651 |
hidden_states = outputs[0]
|
1652 |
+
if num_logits_to_keep is None:
|
1653 |
logits = self.lm_head(hidden_states)
|
1654 |
else:
|
1655 |
+
logits = self.lm_head(hidden_states[..., -num_logits_to_keep:, :])
|
1656 |
logits = logits.float()
|
1657 |
|
1658 |
loss = None
|
|
|
1702 |
attention_mask=None,
|
1703 |
inputs_embeds=None,
|
1704 |
output_router_logits=False,
|
1705 |
+
cache_position=None,
|
1706 |
**kwargs,
|
1707 |
):
|
1708 |
+
empty_past_kv = past_key_values is None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1709 |
|
1710 |
+
# Omit tokens covered by past_key_values
|
1711 |
+
if not empty_past_kv:
|
1712 |
+
past_length = cache_position[0] if cache_position is not None else attention_mask.shape[1]
|
1713 |
+
max_cache_length = self.config.sliding_window
|
1714 |
# Keep only the unprocessed tokens:
|
1715 |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1716 |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
|
|
1727 |
if (
|
1728 |
max_cache_length is not None
|
1729 |
and attention_mask is not None
|
1730 |
+
and past_length + input_ids.shape[1] > max_cache_length
|
1731 |
):
|
1732 |
attention_mask = attention_mask[:, -max_cache_length:]
|
1733 |
+
else:
|
1734 |
+
past_key_values = HybridMambaAttentionDynamicCache(
|
1735 |
+
self.config, input_ids.shape[0], self.dtype, device=self.device
|
1736 |
+
)
|
1737 |
|
1738 |
position_ids = kwargs.get("position_ids", None)
|
1739 |
if attention_mask is not None and position_ids is None:
|
1740 |
# create position_ids on the fly for batch generation
|
1741 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
1742 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
1743 |
+
if not empty_past_kv:
|
1744 |
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1745 |
|
1746 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1747 |
+
if inputs_embeds is not None and empty_past_kv:
|
1748 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
1749 |
else:
|
1750 |
model_inputs = {"input_ids": input_ids}
|
|
|
1756 |
"use_cache": kwargs.get("use_cache"),
|
1757 |
"attention_mask": attention_mask,
|
1758 |
"output_router_logits": output_router_logits,
|
1759 |
+
"num_logits_to_keep": self.config.num_logits_to_keep,
|
1760 |
+
"cache_position": cache_position,
|
1761 |
}
|
1762 |
)
|
1763 |
return model_inputs
|
1764 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1765 |
|
1766 |
@add_start_docstrings(
|
1767 |
"""
|