TristanBehrens commited on
Commit
cd54e13
·
1 Parent(s): 1e735e8

Upload lakhclean_gpt2_generation.ipynb

Browse files
Files changed (1) hide show
  1. lakhclean_gpt2_generation.ipynb +316 -0
lakhclean_gpt2_generation.ipynb ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "DWLOSBkp0A2U"
7
+ },
8
+ "source": [
9
+ "# GPT-2 for music - By Dr. Tristan Behrens\n",
10
+ "\n",
11
+ "This notebook shows you how to generate music with GPT-2\n",
12
+ "\n",
13
+ "--- \n",
14
+ "\n",
15
+ "## Find me online\n",
16
+ "\n",
17
+ "- https://www.linkedin.com/in/dr-tristan-behrens-734967a2/\n",
18
+ "- https://twitter.com/DrTBehrens\n",
19
+ "- https://github.com/AI-Guru\n",
20
+ "- https://huggingface.co/TristanBehrens\n",
21
+ "- https://huggingface.co/ai-guru\n",
22
+ "\n",
23
+ "\n",
24
+ "---\n",
25
+ "\n",
26
+ "## Install depencencies.\n",
27
+ "\n",
28
+ "The following cell sets up fluidsynth and pyfluidsynth on colaboratory."
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "source": [
34
+ "if \"google.colab\" in str(get_ipython()):\n",
35
+ " print(\"Installing dependencies...\")\n",
36
+ " !apt-get update -qq && apt-get install -qq libfluidsynth2 build-essential libasound2-dev libjack-dev\n",
37
+ " !pip install -qU pyfluidsynth"
38
+ ],
39
+ "metadata": {
40
+ "id": "k1a8sd2KZCz9"
41
+ },
42
+ "execution_count": null,
43
+ "outputs": []
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "metadata": {
49
+ "id": "6J_AnhV8D5p6"
50
+ },
51
+ "outputs": [],
52
+ "source": [
53
+ "!pip install transformers\n",
54
+ "!pip install note_seq"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "markdown",
59
+ "metadata": {
60
+ "id": "RzhHhFll0JVl"
61
+ },
62
+ "source": [
63
+ "## Load the tokenizer and the model from 🤗 Hub."
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "source": [
69
+ "import os\n",
70
+ "os.environ[\"PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION\"] = \"python\""
71
+ ],
72
+ "metadata": {
73
+ "id": "zGupj_vuZ9f2"
74
+ },
75
+ "execution_count": null,
76
+ "outputs": []
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": null,
81
+ "metadata": {
82
+ "id": "g3ih12FMD7bs"
83
+ },
84
+ "outputs": [],
85
+ "source": [
86
+ "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
87
+ "\n",
88
+ "tokenizer = AutoTokenizer.from_pretrained(\"ai-guru/lakhclean_mmmtrack_4bars_d-2048\")\n",
89
+ "model = AutoModelForCausalLM.from_pretrained(\"ai-guru/lakhclean_mmmtrack_4bars_d-2048\")"
90
+ ]
91
+ },
92
+ {
93
+ "cell_type": "markdown",
94
+ "metadata": {
95
+ "id": "YfHXFugA0WdI"
96
+ },
97
+ "source": [
98
+ "## Convert the generated tokens to music that you can listen to.\n",
99
+ "\n",
100
+ "This uses note_seq, which is something like MIDI coming from Google Magenta. You could even use it to load and save MIDI files. Check their repo if you want to learn more.\n"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {
107
+ "id": "L3QMj8NyEBqs"
108
+ },
109
+ "outputs": [],
110
+ "source": [
111
+ "import note_seq\n",
112
+ "\n",
113
+ "NOTE_LENGTH_16TH_120BPM = 0.25 * 60 / 120\n",
114
+ "BAR_LENGTH_120BPM = 4.0 * 60 / 120\n",
115
+ "\n",
116
+ "def token_sequence_to_note_sequence(token_sequence, use_program=True, use_drums=True, instrument_mapper=None, only_piano=False):\n",
117
+ "\n",
118
+ " if isinstance(token_sequence, str):\n",
119
+ " token_sequence = token_sequence.split()\n",
120
+ "\n",
121
+ " note_sequence = empty_note_sequence()\n",
122
+ "\n",
123
+ " # Render all notes.\n",
124
+ " current_program = 1\n",
125
+ " current_is_drum = False\n",
126
+ " current_instrument = 0\n",
127
+ " track_count = 0\n",
128
+ " for token_index, token in enumerate(token_sequence):\n",
129
+ "\n",
130
+ " if token == \"PIECE_START\":\n",
131
+ " pass\n",
132
+ " elif token == \"PIECE_END\":\n",
133
+ " print(\"The end.\")\n",
134
+ " break\n",
135
+ " elif token == \"TRACK_START\":\n",
136
+ " current_bar_index = 0\n",
137
+ " track_count += 1\n",
138
+ " pass\n",
139
+ " elif token == \"TRACK_END\":\n",
140
+ " pass\n",
141
+ " elif token == \"KEYS_START\":\n",
142
+ " pass\n",
143
+ " elif token == \"KEYS_END\":\n",
144
+ " pass\n",
145
+ " elif token.startswith(\"KEY=\"):\n",
146
+ " pass\n",
147
+ " elif token.startswith(\"INST\"):\n",
148
+ " instrument = token.split(\"=\")[-1]\n",
149
+ " if instrument != \"DRUMS\" and use_program:\n",
150
+ " if instrument_mapper is not None:\n",
151
+ " if instrument in instrument_mapper:\n",
152
+ " instrument = instrument_mapper[instrument]\n",
153
+ " current_program = int(instrument)\n",
154
+ " current_instrument = track_count\n",
155
+ " current_is_drum = False\n",
156
+ " if instrument == \"DRUMS\" and use_drums:\n",
157
+ " current_instrument = 0\n",
158
+ " current_program = 0\n",
159
+ " current_is_drum = True\n",
160
+ " elif token == \"BAR_START\":\n",
161
+ " current_time = current_bar_index * BAR_LENGTH_120BPM\n",
162
+ " current_notes = {}\n",
163
+ " elif token == \"BAR_END\":\n",
164
+ " current_bar_index += 1\n",
165
+ " pass\n",
166
+ " elif token.startswith(\"NOTE_ON\"):\n",
167
+ " pitch = int(token.split(\"=\")[-1])\n",
168
+ " note = note_sequence.notes.add()\n",
169
+ " note.start_time = current_time\n",
170
+ " note.end_time = current_time + 4 * NOTE_LENGTH_16TH_120BPM\n",
171
+ " note.pitch = pitch\n",
172
+ " note.instrument = current_instrument\n",
173
+ " note.program = current_program\n",
174
+ " note.velocity = 80\n",
175
+ " note.is_drum = current_is_drum\n",
176
+ " current_notes[pitch] = note\n",
177
+ " elif token.startswith(\"NOTE_OFF\"):\n",
178
+ " pitch = int(token.split(\"=\")[-1])\n",
179
+ " if pitch in current_notes:\n",
180
+ " note = current_notes[pitch]\n",
181
+ " note.end_time = current_time\n",
182
+ " elif token.startswith(\"TIME_DELTA\"):\n",
183
+ " delta = float(token.split(\"=\")[-1]) * NOTE_LENGTH_16TH_120BPM\n",
184
+ " current_time += delta\n",
185
+ " elif token.startswith(\"DENSITY=\"):\n",
186
+ " pass\n",
187
+ " elif token == \"[PAD]\":\n",
188
+ " pass\n",
189
+ " else:\n",
190
+ " #print(f\"Ignored token {token}.\")\n",
191
+ " pass\n",
192
+ "\n",
193
+ " # Make the instruments right.\n",
194
+ " instruments_drums = []\n",
195
+ " for note in note_sequence.notes:\n",
196
+ " pair = [note.program, note.is_drum]\n",
197
+ " if pair not in instruments_drums:\n",
198
+ " instruments_drums += [pair]\n",
199
+ " note.instrument = instruments_drums.index(pair)\n",
200
+ "\n",
201
+ " if only_piano:\n",
202
+ " for note in note_sequence.notes:\n",
203
+ " if not note.is_drum:\n",
204
+ " note.instrument = 0\n",
205
+ " note.program = 0\n",
206
+ "\n",
207
+ " return note_sequence\n",
208
+ "\n",
209
+ "def empty_note_sequence(qpm=120.0, total_time=0.0):\n",
210
+ " note_sequence = note_seq.protobuf.music_pb2.NoteSequence()\n",
211
+ " note_sequence.tempos.add().qpm = qpm\n",
212
+ " note_sequence.ticks_per_quarter = note_seq.constants.STANDARD_PPQ\n",
213
+ " note_sequence.total_time = total_time\n",
214
+ " return note_sequence"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "markdown",
219
+ "source": [
220
+ "## Generate music\n",
221
+ "\n",
222
+ "This will generate one track of music and render it. "
223
+ ],
224
+ "metadata": {
225
+ "id": "4kr2dECziaFA"
226
+ }
227
+ },
228
+ {
229
+ "cell_type": "code",
230
+ "source": [
231
+ "generated_sequence = \"PIECE_START\""
232
+ ],
233
+ "metadata": {
234
+ "id": "cUg1DrlygzgT"
235
+ },
236
+ "execution_count": null,
237
+ "outputs": []
238
+ },
239
+ {
240
+ "cell_type": "markdown",
241
+ "source": [
242
+ "Note: Run the following cell multiple times to generate more tracks."
243
+ ],
244
+ "metadata": {
245
+ "id": "SinUPIHyimr5"
246
+ }
247
+ },
248
+ {
249
+ "cell_type": "code",
250
+ "execution_count": null,
251
+ "metadata": {
252
+ "id": "ZYpukydNESDF"
253
+ },
254
+ "outputs": [],
255
+ "source": [
256
+ "# Encode the conditioning tokens.\n",
257
+ "input_ids = tokenizer.encode(generated_sequence, return_tensors=\"pt\")\n",
258
+ "#print(input_ids)\n",
259
+ "\n",
260
+ "# Generate more tokens.\n",
261
+ "eos_token_id = tokenizer.encode(\"TRACK_END\")[0]\n",
262
+ "temperature = 1.0\n",
263
+ "generated_ids = model.generate(\n",
264
+ " input_ids, \n",
265
+ " max_length=2048,\n",
266
+ " do_sample=True,\n",
267
+ " temperature=temperature,\n",
268
+ " eos_token_id=eos_token_id,\n",
269
+ ")\n",
270
+ "generated_sequence = tokenizer.decode(generated_ids[0])\n",
271
+ "print(generated_sequence)\n",
272
+ "\n",
273
+ "note_sequence = token_sequence_to_note_sequence(generated_sequence)\n",
274
+ "\n",
275
+ "synth = note_seq.fluidsynth\n",
276
+ "note_seq.plot_sequence(note_sequence)\n",
277
+ "note_seq.play_sequence(note_sequence, synth)"
278
+ ]
279
+ },
280
+ {
281
+ "cell_type": "markdown",
282
+ "metadata": {
283
+ "id": "d1x6HeF90kkO"
284
+ },
285
+ "source": [
286
+ "# Thank you!"
287
+ ]
288
+ }
289
+ ],
290
+ "metadata": {
291
+ "colab": {
292
+ "provenance": []
293
+ },
294
+ "kernelspec": {
295
+ "display_name": "Python 3 (ipykernel)",
296
+ "language": "python",
297
+ "name": "python3"
298
+ },
299
+ "language_info": {
300
+ "codemirror_mode": {
301
+ "name": "ipython",
302
+ "version": 3
303
+ },
304
+ "file_extension": ".py",
305
+ "mimetype": "text/x-python",
306
+ "name": "python",
307
+ "nbconvert_exporter": "python",
308
+ "pygments_lexer": "ipython3",
309
+ "version": "3.9.7"
310
+ },
311
+ "accelerator": "GPU",
312
+ "gpuClass": "standard"
313
+ },
314
+ "nbformat": 4,
315
+ "nbformat_minor": 0
316
+ }