ai-forever
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,206 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ru
|
4 |
+
tags:
|
5 |
+
- spellchecking
|
6 |
+
- M2M100
|
7 |
+
- pytorch
|
8 |
+
- natural language generation
|
9 |
license: mit
|
10 |
+
datasets:
|
11 |
+
- ai-forever/spellcheck_benchmark
|
12 |
+
metrics:
|
13 |
+
- precision
|
14 |
+
- recall
|
15 |
+
- f1
|
16 |
+
library_name: transformers
|
17 |
+
model-index:
|
18 |
+
- name: sage-mt5-large
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: text-generation
|
22 |
+
dataset:
|
23 |
+
type: spellcheck_benchmark
|
24 |
+
name: RUSpellRU
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 88.8
|
29 |
+
verified: false
|
30 |
+
- name: Recall
|
31 |
+
type: recall
|
32 |
+
value: 71.5
|
33 |
+
verified: false
|
34 |
+
- name: F1
|
35 |
+
type: f1
|
36 |
+
value: 79.2
|
37 |
+
verified: false
|
38 |
+
- task:
|
39 |
+
type: text-generation
|
40 |
+
dataset:
|
41 |
+
type: spellcheck_benchmark
|
42 |
+
name: MultidomainGold
|
43 |
+
metrics:
|
44 |
+
- name: Precision
|
45 |
+
type: precision
|
46 |
+
value: 63.8
|
47 |
+
verified: false
|
48 |
+
- name: Recall
|
49 |
+
type: recall
|
50 |
+
value: 61.1
|
51 |
+
verified: false
|
52 |
+
- name: F1
|
53 |
+
type: f1
|
54 |
+
value: 62.4
|
55 |
+
verified: false
|
56 |
+
- task:
|
57 |
+
type: text-generation
|
58 |
+
dataset:
|
59 |
+
type: spellcheck_benchmark
|
60 |
+
name: MedSpellchecker
|
61 |
+
metrics:
|
62 |
+
- name: Precision
|
63 |
+
type: precision
|
64 |
+
value: 78.8
|
65 |
+
verified: false
|
66 |
+
- name: Recall
|
67 |
+
type: recall
|
68 |
+
value: 71.4
|
69 |
+
verified: false
|
70 |
+
- name: F1
|
71 |
+
type: f1
|
72 |
+
value: 74.9
|
73 |
+
verified: false
|
74 |
+
- task:
|
75 |
+
type: text-generation
|
76 |
+
dataset:
|
77 |
+
type: spellcheck_benchmark
|
78 |
+
name: GitHubTypoCorpusRu
|
79 |
+
metrics:
|
80 |
+
- name: Precision
|
81 |
+
type: precision
|
82 |
+
value: 47.1
|
83 |
+
verified: false
|
84 |
+
- name: Recall
|
85 |
+
type: recall
|
86 |
+
value: 42.9
|
87 |
+
verified: false
|
88 |
+
- name: F1
|
89 |
+
type: f1
|
90 |
+
value: 44.9
|
91 |
+
verified: false
|
92 |
---
|
93 |
+
# sage-m2m100-1.2B model
|
94 |
+
|
95 |
+
## Summary
|
96 |
+
|
97 |
+
The model corrects spelling errors and typos by bringing all the words in the text to the norm of the Russian language.
|
98 |
+
Corrector was trained based on the model [M2M100-1.2B](https://huggingface.co/facebook/m2m100_1.2B).
|
99 |
+
An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library [SAGE](https://github.com/ai-forever/sage).
|
100 |
+
The model is the fine-tuned version of the [pre-train](https://huggingface.co/ai-forever/RuM2M100-1.2B).
|
101 |
+
|
102 |
+
## Public references
|
103 |
+
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
|
104 |
+
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
|
105 |
+
- [SAGE EACL 2024 paper](https://aclanthology.org/2024.findings-eacl.10/)
|
106 |
+
|
107 |
+
|
108 |
+
## Examples
|
109 |
+
| Input | Output |
|
110 |
+
| --- | --- |
|
111 |
+
| Думю ешцъа лет череа 10 ретроспективно просматривотьэ то будкетцц мне невероя тна ин те р но | Думаю что лет через 10 ретроспективно просматривать это будет мне невероятно интересно |
|
112 |
+
| Основая цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных проишествий, сокращение временных показателей реагирования. | Основная цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных происшествий, сокращение временных показателей реагирования. |
|
113 |
+
| прийдя в МГТУ я был удивлен никого необноружив там… | придя в МГТУ я был удивлен никого не обнаружив там |
|
114 |
+
| | |
|
115 |
+
|
116 |
+
## Metrics
|
117 |
+
### Quality
|
118 |
+
Below are automatic metrics for determining the correctness of the spell checkers.
|
119 |
+
We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all four available datasets:
|
120 |
+
- **RUSpellRU**: texts collected from ([LiveJournal](https://www.livejournal.com/media)), with manually corrected typos and errors;
|
121 |
+
- **MultidomainGold**: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works;
|
122 |
+
- **MedSpellChecker**: texts with errors from medical anamnesis;
|
123 |
+
- **GitHubTypoCorpusRu**: spelling errors and typos in commits from [GitHub](https://github.com);
|
124 |
+
|
125 |
+
**RUSpellRU**
|
126 |
+
| Model | Precision | Recall | F1 |
|
127 |
+
| --- | --- | --- | --- |
|
128 |
+
| sage-m2m100-1.2B | 88.8 | 71.5 | 79.2 |
|
129 |
+
| sage-ai-service | 93.5 | 82.4 | 87.6 |
|
130 |
+
| gpt-3.5-turbo | 39.6 | 62.3 | 48.5 |
|
131 |
+
| gpt-4 | 69.5 | 81.0 | 74.8 |
|
132 |
+
| Yandex.Speller | 83.0 | 59.8 | 69.5 |
|
133 |
+
| JamSpell | 42.1 | 32.8 | 36.9 |
|
134 |
+
| HunSpell | 31.3 | 34.9 | 33.0 |
|
135 |
+
|
136 |
+
**MultidomainGold**
|
137 |
+
| Model | Precision | Recall | F1 |
|
138 |
+
| --- | --- | --- | --- |
|
139 |
+
| sage-m2m100-1.2B | 63.8 | 61.1 | 62.4 |
|
140 |
+
| sage-ai-service | 70.9 | 68.8 | 69.9 |
|
141 |
+
| gpt-3.5-turbo | 17.8 | 56.1 | 27.0 |
|
142 |
+
| gpt-4 | 31.1 | 78.1 | 44.5 |
|
143 |
+
| Yandex.Speller | 52.9 | 51.4 | 52.2 |
|
144 |
+
| JamSpell | 25.7 | 30.6 | 28.0 |
|
145 |
+
| HunSpell | 16.2 | 40.1 | 23.0 |
|
146 |
+
|
147 |
+
**MedSpellChecker**
|
148 |
+
| Model | Precision | Recall | F1 |
|
149 |
+
| --- | --- | --- | --- |
|
150 |
+
| sage-m2m100-1.2B | 78.8 | 71.4 | 74.9 |
|
151 |
+
| sage-ai-service | 73.4 | 76.2 | 74.9 |
|
152 |
+
| gpt-3.5-turbo | 15.1 | 53.6 | 23.5 |
|
153 |
+
| gpt-4 | 48.9 | 88.7 | 63.1 |
|
154 |
+
| Yandex.Speller | 80.6 | 47.8 | 60.0 |
|
155 |
+
| JamSpell | 24.6 | 29.7 | 26.9 |
|
156 |
+
| HunSpell | 10.3 | 40.2 | 16.4 |
|
157 |
+
|
158 |
+
**GitHubTypoCorpusRu**
|
159 |
+
| Model | Precision | Recall | F1 |
|
160 |
+
| --- | --- | --- | --- |
|
161 |
+
| sage-m2m100-1.2B | 47.1 | 42.9 | 44.9 |
|
162 |
+
| sage-ai-service | 76.1 | 51.2 | 61.2 |
|
163 |
+
| gpt-3.5-turbo | 23.7 | 43.9 | 30.8 |
|
164 |
+
| gpt-4 | 34.7 | 60.5 | 44.1|
|
165 |
+
| Yandex.Speller | 67.7 | 37.5 | 48.3 |
|
166 |
+
| JamSpell | 49.5 | 29.9 | 37.3 |
|
167 |
+
| HunSpell | 28.5 | 30.7 | 29.6 |
|
168 |
+
|
169 |
+
## How to use
|
170 |
+
```python
|
171 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
172 |
+
|
173 |
+
path_to_model = "ai-forever/sage-m2m100-1.2B"
|
174 |
+
model = M2M100ForConditionalGeneration.from_pretrained(path_to_model)
|
175 |
+
tokenizer = M2M100Tokenizer.from_pretrained(path_to_model, src_lang="ru", tgt_lang="ru")
|
176 |
+
|
177 |
+
sentence = "прийдя в МГТУ я был удивлен никого необноружив там…"
|
178 |
+
encodings = tokenizer(sentence, return_tensors="pt")
|
179 |
+
generated_tokens = model.generate(
|
180 |
+
**encodings, forced_bos_token_id=tokenizer.get_lang_id("ru"))
|
181 |
+
answer = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
182 |
+
|
183 |
+
print(answer)
|
184 |
+
#["прийдя в МГТУ я был удивлен никого не обнаружив там..."]
|
185 |
+
```
|
186 |
+
|
187 |
+
## Resources
|
188 |
+
- [SAGE library](https://github.com/ai-forever/sage), GitHub
|
189 |
+
- [sage-fredt5-large](https://huggingface.co/ai-forever/sage-fredt5-large), HuggingFace
|
190 |
+
- [sage-fredt5-distilled-95m](https://huggingface.co/ai-forever/sage-fredt5-distilled-95m), HuggingFace
|
191 |
+
- [sage-m2m100-1.2B](https://huggingface.co/ai-forever/sage-m2m100-1.2B), HuggingFace
|
192 |
+
- [sage-mt5-large](https://huggingface.co/ai-forever/sage-mt5-large), HuggingFace
|
193 |
+
|
194 |
+
## License
|
195 |
+
Model [M2M100-1.2B](https://huggingface.co/facebook/m2m100_1.2B), on the basis of which our solution is made, and its source code are supplied under the MIT open license.
|
196 |
+
Our solution also comes with MIT license.
|
197 |
+
|
198 |
+
## Specifications
|
199 |
+
- File size: 5 Gb;
|
200 |
+
- Framework: pytorch
|
201 |
+
- Format: AI Service
|
202 |
+
- Version: v2.0
|
203 |
+
- Developer: SberDevices, AGI NLP
|
204 |
+
|
205 |
+
## Contacts
|
206 |