{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e4adade85e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e4adade8670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e4adade8700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e4adade8790>", "_build": "<function ActorCriticPolicy._build at 0x7e4adade8820>", "forward": "<function ActorCriticPolicy.forward at 0x7e4adade88b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e4adade8940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e4adade89d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e4adade8a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e4adade8af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e4adade8b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e4adade8c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e4adadfc7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717796620904468447, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJOQWj43xD8/FXJaPQAfuL67Sgs+kywpvQAAAAAAAAAAZlLGPBSMsbq+xc68fPKjPCcXqLqAro09AACAPwAAgD9meQ09MXGtP3tpfD2A2qy+k6OTunfupTwAAAAAAAAAAK3EHD40WmY/+6uePQcY2L6Pg6k9AB1xvQAAAAAAAAAAzVRWPhVw8T5uF2O+bw2OvjwPGbyC74a8AAAAAAAAAACzb7c9QylKvMqFh72a5y88v3ivPff5E70AAAAAAAAAAJrxtTs/a2w/ujvHPRkYlb7gXN28GVQKPgAAAAAAAAAAAFTOvVsTsz+pcbG+FPO6vu3t670DtDG+AAAAAAAAAAAzJbu8rpWfulYMbrZE5W6xHN6qOc5ijjUAAIA/AACAPy1UDL7qyh8/4ffFPcPnb77bpRC9IpyYPQAAAAAAAAAAVkpevpxyHz9xFQQ+U+p8vgRHbr0miQY9AAAAAAAAAAAAVnS8hdT6u11B5rsBgaw8sYBHve5Zjz0AAIA/AACAPzqPNz5ftmA/IuEYPVX+tb4YMes9KHaruQAAAAAAAAAAYjOUvszxYz+DSFA8DaaFvvlhQr53FhO9AAAAAAAAAADm7lC9M32vPp/BFz5nbWy+h/IJOy/egzwAAAAAAAAAAGa6Or2IM4+8m5nDvFLrZrzZK3i8dtOVuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAnGxQizLSMAWyUTRoBjAF0lEdAlL/LZ8KG+XV9lChoBkdAcRRxVhkRSWgHTRoBaAhHQJTABW2gFot1fZQoaAZHQHLbpWV/tppoB01MAWgIR0CUwCkEcKgJdX2UKGgGR0BNqARbr1M/aAdL3mgIR0CUwHXC0ngHdX2UKGgGR0BvsLpiZv1laAdNQAFoCEdAlMHi5/b0v3V9lChoBkdAULXTkQwsXmgHS+9oCEdAlMHrfUF0P3V9lChoBkdAcLdHEMspX2gHTUcBaAhHQJTCPalDWsl1fZQoaAZHQHAns/QjUutoB00WAWgIR0CUwrbfP5YYdX2UKGgGR0BwrwF3Y+SsaAdNDAFoCEdAlMNlQ66renV9lChoBkdAcWOSKFZgX2gHTRwBaAhHQJTDzVRUFSt1fZQoaAZHQHHraBun/DNoB02hAWgIR0CUw93BpHqedX2UKGgGR0BCYZQgs9SuaAdL4mgIR0CUxWVlwtJ4dX2UKGgGR0BDMYPGyX2NaAdL4WgIR0CUxoiB5HEudX2UKGgGR0BFNaS1Vo6CaAdL7GgIR0CUxriw0O3EdX2UKGgGR0BwAUXWOIZZaAdNQgFoCEdAlMbBddE9dXV9lChoBkdAcF9t4A0bcWgHTQwBaAhHQJTHTfvWpZR1fZQoaAZHQHGXMS5AhStoB00sAWgIR0CUx1FYuCf6dX2UKGgGR0BxfC2lVLi/aAdNOwFoCEdAlMeoh6jWTXV9lChoBkdAb/DEG7jDK2gHTSABaAhHQJTImvIOpbV1fZQoaAZHQG7WWRigCfZoB01WAWgIR0CUyYGpuMuOdX2UKGgGR0Bw/KANG3F2aAdNIAFoCEdAlMoerhisn3V9lChoBkdAcU133Hq/umgHTQABaAhHQJTK1qCYkVx1fZQoaAZHQG3RaVMVUMpoB003AWgIR0CUyytelbeNdX2UKGgGR0BwmKZmZmZmaAdNOQFoCEdAlMu8495hSnV9lChoBkdAbTvlRP420mgHTTIBaAhHQJTM4b83uNR1fZQoaAZHQGz3XPqs2ehoB02TAWgIR0CUzZpwS8J2dX2UKGgGR0ByO2MKkVN6aAdNAgFoCEdAlM5pqZc9n3V9lChoBkdAcM3uQ6p5vGgHTS0BaAhHQJTOb/DLr5Z1fZQoaAZHQHFrOzlcQiBoB00eAWgIR0CUz0NVR1oydX2UKGgGR0BE3OMuOCGvaAdL5WgIR0CUz5lHjIaMdX2UKGgGR0BwDyPGQ0XQaAdNNwFoCEdAlM/fTG5tnHV9lChoBkdAclJVlf7aZmgHTTIBaAhHQJTQ+m2sq8V1fZQoaAZHQHDaRkd3jdZoB01MAWgIR0CU0V75mAbydX2UKGgGR0ByP3cxj8UFaAdNWgFoCEdAlNHB+fAbhnV9lChoBkdAcWJR9w3o92gHTSYBaAhHQJTSf8vVVgh1fZQoaAZHQHMEGW6bvw5oB00cAWgIR0CU0s9K28ZldX2UKGgGR0ArY7oSteUqaAdL9GgIR0CU0zvAoG6gdX2UKGgGR0ByP84YJmdzaAdNLwFoCEdAlNQLmuDBdnV9lChoBkdAUCzMotthu2gHS/loCEdAlNU8JIDoyXV9lChoBkdAcYse/5+H8GgHS/xoCEdAlNY8l9jPOnV9lChoBkdAbXdrdFfAsWgHTTUBaAhHQJTWjD1oQFt1fZQoaAZHQG6lLSmZVn5oB00fAWgIR0CU13jdHlOodX2UKGgGR0Bw8CSq2jO+aAdNDAFoCEdAlNgcAR02cnV9lChoBkdAcSg+MqBmPGgHTa0BaAhHQJTYy57PY4B1fZQoaAZHQEt0Z3s5XEJoB0vgaAhHQJTZBVYISlF1fZQoaAZHQHHyjibUgB9oB01LAWgIR0CU7tz3h4t6dX2UKGgGR0Bxrpy0a6z3aAdNMAFoCEdAlO++Sr5qM3V9lChoBkdAcIq0Yj0L+mgHTSoBaAhHQJTv9kxyn1p1fZQoaAZHQHBxClSCOFRoB00qAWgIR0CU8UMb3oLYdX2UKGgGR0Bv+oqiGnGbaAdNjAFoCEdAlPGbT6SDAnV9lChoBkdANHQnc+JP7GgHS61oCEdAlPIxA0Kqn3V9lChoBkdAUi19Tgl4T2gHS81oCEdAlPJYe1a4c3V9lChoBkdAb0z91EE1VGgHTUgBaAhHQJTyjHxSYPZ1fZQoaAZHQG3/cDB/I81oB00wAWgIR0CU8xLSeAd5dX2UKGgGR0BxDDNr0rbyaAdNXQFoCEdAlPOHfQ8fWHV9lChoBkdAcrEtALRa5mgHTSgBaAhHQJTzzjin5zp1fZQoaAZHQG6IcO09hZ1oB003AWgIR0CU9PUXHim3dX2UKGgGR0BwyWBreqJeaAdNCAFoCEdAlPWnDJlrdnV9lChoBkdAb17FiKBNEmgHTTkBaAhHQJT2idYnv2J1fZQoaAZHQGAsC8e0XxhoB03oA2gIR0CU90MaCL/CdX2UKGgGR0BxcP8+A3DOaAdNRwFoCEdAlPe3rhR64XV9lChoBkdAcG3AG0NSZWgHTSwBaAhHQJT3tV4oqkN1fZQoaAZHQG/O5EUj9n9oB00tAWgIR0CU+L71ZkkKdX2UKGgGR0ByTzobGWD6aAdNTQFoCEdAlPmHUYsND3V9lChoBkdAcf9QpWmxdWgHTRkBaAhHQJT5r6Fdszl1fZQoaAZHQHC4FMmF8G9oB00qAWgIR0CU+d/o7muDdX2UKGgGR0Br9Gjj7yhBaAdNMAFoCEdAlPtXcL0BfnV9lChoBkdAckqFdcB2fWgHTSsBaAhHQJT7xb1RLsd1fZQoaAZHQHJmCPEKmbdoB01PAWgIR0CU/BVjI7vHdX2UKGgGR0BtG7T6SDAaaAdNMAFoCEdAlPxv16E8JXV9lChoBkdAcWidpItlI2gHTXUBaAhHQJT9Cqgh8pl1fZQoaAZHQHEeA3kxREZoB009AWgIR0CU/SADq4YrdX2UKGgGR0BxsmowVTJhaAdNTAFoCEdAlP7oWUKRdXV9lChoBkdAcio850bLlmgHTTIBaAhHQJT+5hfBvaV1fZQoaAZHQG3rMkpqh11oB00nAWgIR0CVAEeXAuZkdX2UKGgGR0BxZbHwPRReaAdNQQFoCEdAlQBTO9nK4nV9lChoBkdAbaJf2K2rn2gHTS4BaAhHQJUA8JMQEp11fZQoaAZHQHKMvY4ACGNoB00SAWgIR0CVASLNwBHTdX2UKGgGR0Bu0fMbFS88aAdNTQFoCEdAlQHaIacZtXV9lChoBkdAcgMXq7iAD2gHTQ8BaAhHQJUCH7iyY5V1fZQoaAZHQG1NZEUj9n9oB00cAWgIR0CVAlB5X2dvdX2UKGgGR0BvGEz0pVjqaAdNJQFoCEdAlQJyaVlf7nV9lChoBkdARO+ktVaOgmgHS+1oCEdAlQMdVR1ox3V9lChoBkdAb3Kv7FbV0GgHTSMBaAhHQJUD7gTAWSF1fZQoaAZHQHCgocJdB0JoB006AWgIR0CVBPrwOOKgdX2UKGgGR0By1B7SiM5waAdNKAFoCEdAlQUY593KS3V9lChoBkdAb5U0pEx7A2gHTScBaAhHQJUFqGHpKSR1fZQoaAZHQG9XXiaRZEFoB00wAWgIR0CVBfrTH80ldX2UKGgGR0BtuReb/ffoaAdNFwFoCEdAlQbwUg0TDnV9lChoBkdAcAD/m1YyPGgHTSsBaAhHQJUHg/FBIFx1fZQoaAZHQHB6mT9sJppoB001AWgIR0CVCWGxlg+hdX2UKGgGR0Bt/r/wRXfZaAdNJgFoCEdAlQmRMvh60XV9lChoBkdAcXGWGh24eGgHTUEBaAhHQJUJwjhUBGR1fZQoaAZHQHCZznaFmFtoB00XAWgIR0CVCnJPZZjhdX2UKGgGR0A6GxcVxjriaAdL4GgIR0CVCuAbQ1JldX2UKGgGR0BuVypNsWO7aAdNIQFoCEdAlQsn003wTnV9lChoBkdAcEbegte2NWgHTTwBaAhHQJULZLZi/fx1fZQoaAZHQG+vBjOLR8doB01bAWgIR0CVC5aRp1zRdX2UKGgGR0BwTzy+Yc//aAdNSAFoCEdAlQwxqj8DS3V9lChoBkdAbsfJ04iosWgHTTcBaAhHQJUMmB9Tgl51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |