--- license: mit tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy - f1 model-index: - name: indobert-classification results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu args: smsa metrics: - name: Accuracy type: accuracy value: 0.9396825396825397 - name: F1 type: f1 value: 0.9393057427148881 --- # indobert-classification This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.3707 - Accuracy: 0.9397 - F1: 0.9393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2458 | 1.0 | 688 | 0.2229 | 0.9325 | 0.9323 | | 0.1258 | 2.0 | 1376 | 0.2332 | 0.9373 | 0.9369 | | 0.059 | 3.0 | 2064 | 0.3389 | 0.9365 | 0.9365 | | 0.0268 | 4.0 | 2752 | 0.3412 | 0.9421 | 0.9417 | | 0.0097 | 5.0 | 3440 | 0.3707 | 0.9397 | 0.9393 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1