adrian-lam commited on
Commit
7ecf383
1 Parent(s): 4367535

Initial commit

Browse files
Files changed (3) hide show
  1. README.md +314 -0
  2. config.json +200 -0
  3. ubcv_grade_predictor_ridge.joblib +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-regression
7
+ model_format: pickle
8
+ model_file: ubcv_grade_predictor_ridge.joblib
9
+ widget:
10
+ - structuredData:
11
+ Campus:
12
+ - UBCV
13
+ Course:
14
+ - 110
15
+ CourseLevel:
16
+ - 1
17
+ Course_Avg_Roll_1y:
18
+ - 73.5864074445
19
+ Course_Max_Last_3y:
20
+ - 91.0
21
+ Course_Min_Last_3y:
22
+ - 71.898305085
23
+ Course_Std_Last_3y:
24
+ - 7.270712022509893
25
+ Prev_50-54:
26
+ - 1.0
27
+ Prev_55-59:
28
+ - 5.0
29
+ Prev_60-63:
30
+ - 11.0
31
+ Prev_64-67:
32
+ - 12.0
33
+ Prev_68-71:
34
+ - 14.0
35
+ Prev_72-75:
36
+ - 15.0
37
+ Prev_76-79:
38
+ - 11.0
39
+ Prev_80-84:
40
+ - 31.0
41
+ Prev_85-89:
42
+ - 23.0
43
+ Prev_90-100:
44
+ - 23.0
45
+ Prev_<50:
46
+ - 31.0
47
+ Prev_High:
48
+ - 97.0
49
+ Prev_Low:
50
+ - 5.0
51
+ Prev_Median:
52
+ - .nan
53
+ Prev_Percentile (25):
54
+ - .nan
55
+ Prev_Percentile (75):
56
+ - .nan
57
+ Prof_Courses_Taught:
58
+ - .nan
59
+ Prof_Prev_50-54:
60
+ - .nan
61
+ Prof_Prev_55-59:
62
+ - .nan
63
+ Prof_Prev_60-63:
64
+ - .nan
65
+ Prof_Prev_64-67:
66
+ - .nan
67
+ Prof_Prev_68-71:
68
+ - .nan
69
+ Prof_Prev_72-75:
70
+ - .nan
71
+ Prof_Prev_76-79:
72
+ - .nan
73
+ Prof_Prev_80-84:
74
+ - .nan
75
+ Prof_Prev_85-89:
76
+ - .nan
77
+ Prof_Prev_90-100:
78
+ - .nan
79
+ Prof_Prev_<50:
80
+ - .nan
81
+ Prof_Prev_High:
82
+ - .nan
83
+ Prof_Prev_Low:
84
+ - .nan
85
+ Prof_Prev_Median:
86
+ - .nan
87
+ Prof_Prev_Percentile (25):
88
+ - .nan
89
+ Prof_Prev_Percentile (75):
90
+ - .nan
91
+ Professor:
92
+ - ''
93
+ Session:
94
+ - W
95
+ Subject:
96
+ - CPSC
97
+ SubjectCourse:
98
+ - CPSC110
99
+ Year:
100
+ - 2018
101
+ Years_Since_Start:
102
+ - 4
103
+ ---
104
+
105
+ # Model description
106
+
107
+ [More Information Needed]
108
+
109
+ ## Intended uses & limitations
110
+
111
+ [More Information Needed]
112
+
113
+ ## Training Procedure
114
+
115
+ [More Information Needed]
116
+
117
+ ### Hyperparameters
118
+
119
+ <details>
120
+ <summary> Click to expand </summary>
121
+
122
+ | Hyperparameter | Value |
123
+ |----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
124
+ | memory | |
125
+ | steps | [('columntransformer', ColumnTransformer(transformers=[('pipeline-1',<br /> Pipeline(steps=[('simpleimputer',<br /> SimpleImputer()),<br /> ('standardscaler',<br /> StandardScaler())]),<br /> ['Course_Avg_Roll_1y', 'Course_Min_Last_3y',<br /> 'Course_Max_Last_3y', 'Course_Std_Last_3y']),<br /> ('pipeline-2',<br /> Pipeline(steps=[('simpleimputer',<br /> SimpleImputer(strategy='most_frequent')),<br /> ('onehotencoder',<br /> OneHotEncoder(drop='if_b...<br /> SimpleImputer(strategy='most_frequent')),<br /> ('ordinalencoder',<br /> OrdinalEncoder(handle_unknown='use_encoded_value',<br /> unknown_value=-1))]),<br /> ['CourseLevel', 'Years_Since_Start',<br /> 'Prof_Courses_Taught', 'Year']),<br /> ('drop', 'drop',<br /> ['Reported', 'Section', 'Detail', 'Median',<br /> 'Percentile (25)', 'Percentile (75)', 'High',<br /> 'Low', '<50', '50-54', '55-59', '60-63',<br /> '64-67', '68-71', '72-75', '76-79', '80-84',<br /> '85-89', '90-100'])])), ('ridge', Ridge(alpha=2.091, random_state=42))] |
126
+ | transform_input | |
127
+ | verbose | False |
128
+ | columntransformer | ColumnTransformer(transformers=[('pipeline-1',<br /> Pipeline(steps=[('simpleimputer',<br /> SimpleImputer()),<br /> ('standardscaler',<br /> StandardScaler())]),<br /> ['Course_Avg_Roll_1y', 'Course_Min_Last_3y',<br /> 'Course_Max_Last_3y', 'Course_Std_Last_3y']),<br /> ('pipeline-2',<br /> Pipeline(steps=[('simpleimputer',<br /> SimpleImputer(strategy='most_frequent')),<br /> ('onehotencoder',<br /> OneHotEncoder(drop='if_b...<br /> SimpleImputer(strategy='most_frequent')),<br /> ('ordinalencoder',<br /> OrdinalEncoder(handle_unknown='use_encoded_value',<br /> unknown_value=-1))]),<br /> ['CourseLevel', 'Years_Since_Start',<br /> 'Prof_Courses_Taught', 'Year']),<br /> ('drop', 'drop',<br /> ['Reported', 'Section', 'Detail', 'Median',<br /> 'Percentile (25)', 'Percentile (75)', 'High',<br /> 'Low', '<50', '50-54', '55-59', '60-63',<br /> '64-67', '68-71', '72-75', '76-79', '80-84',<br /> '85-89', '90-100'])]) |
129
+ | ridge | Ridge(alpha=2.091, random_state=42) |
130
+ | columntransformer__force_int_remainder_cols | True |
131
+ | columntransformer__n_jobs | |
132
+ | columntransformer__remainder | drop |
133
+ | columntransformer__sparse_threshold | 0.3 |
134
+ | columntransformer__transformer_weights | |
135
+ | columntransformer__transformers | [('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer()),<br /> ('standardscaler', StandardScaler())]), ['Course_Avg_Roll_1y', 'Course_Min_Last_3y', 'Course_Max_Last_3y', 'Course_Std_Last_3y']), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br /> ('onehotencoder',<br /> OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]), ['Campus', 'Session', 'SubjectCourse', 'Professor', 'Subject']), ('pipeline-3', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br /> ('ordinalencoder',<br /> OrdinalEncoder(handle_unknown='use_encoded_value',<br /> unknown_value=-1))]), ['CourseLevel', 'Years_Since_Start', 'Prof_Courses_Taught', 'Year']), ('drop', 'drop', ['Reported', 'Section', 'Detail', 'Median', 'Percentile (25)', 'Percentile (75)', 'High', 'Low', '<50', '50-54', '55-59', '60-63', '64-67', '68-71', '72-75', '76-79', '80-84', '85-89', '90-100'])] |
136
+ | columntransformer__verbose | False |
137
+ | columntransformer__verbose_feature_names_out | True |
138
+ | columntransformer__pipeline-1 | Pipeline(steps=[('simpleimputer', SimpleImputer()),<br /> ('standardscaler', StandardScaler())]) |
139
+ | columntransformer__pipeline-2 | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br /> ('onehotencoder',<br /> OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]) |
140
+ | columntransformer__pipeline-3 | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br /> ('ordinalencoder',<br /> OrdinalEncoder(handle_unknown='use_encoded_value',<br /> unknown_value=-1))]) |
141
+ | columntransformer__drop | drop |
142
+ | columntransformer__pipeline-1__memory | |
143
+ | columntransformer__pipeline-1__steps | [('simpleimputer', SimpleImputer()), ('standardscaler', StandardScaler())] |
144
+ | columntransformer__pipeline-1__transform_input | |
145
+ | columntransformer__pipeline-1__verbose | False |
146
+ | columntransformer__pipeline-1__simpleimputer | SimpleImputer() |
147
+ | columntransformer__pipeline-1__standardscaler | StandardScaler() |
148
+ | columntransformer__pipeline-1__simpleimputer__add_indicator | False |
149
+ | columntransformer__pipeline-1__simpleimputer__copy | True |
150
+ | columntransformer__pipeline-1__simpleimputer__fill_value | |
151
+ | columntransformer__pipeline-1__simpleimputer__keep_empty_features | False |
152
+ | columntransformer__pipeline-1__simpleimputer__missing_values | nan |
153
+ | columntransformer__pipeline-1__simpleimputer__strategy | mean |
154
+ | columntransformer__pipeline-1__standardscaler__copy | True |
155
+ | columntransformer__pipeline-1__standardscaler__with_mean | True |
156
+ | columntransformer__pipeline-1__standardscaler__with_std | True |
157
+ | columntransformer__pipeline-2__memory | |
158
+ | columntransformer__pipeline-2__steps | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('onehotencoder', OneHotEncoder(drop='if_binary', handle_unknown='ignore'))] |
159
+ | columntransformer__pipeline-2__transform_input | |
160
+ | columntransformer__pipeline-2__verbose | False |
161
+ | columntransformer__pipeline-2__simpleimputer | SimpleImputer(strategy='most_frequent') |
162
+ | columntransformer__pipeline-2__onehotencoder | OneHotEncoder(drop='if_binary', handle_unknown='ignore') |
163
+ | columntransformer__pipeline-2__simpleimputer__add_indicator | False |
164
+ | columntransformer__pipeline-2__simpleimputer__copy | True |
165
+ | columntransformer__pipeline-2__simpleimputer__fill_value | |
166
+ | columntransformer__pipeline-2__simpleimputer__keep_empty_features | False |
167
+ | columntransformer__pipeline-2__simpleimputer__missing_values | nan |
168
+ | columntransformer__pipeline-2__simpleimputer__strategy | most_frequent |
169
+ | columntransformer__pipeline-2__onehotencoder__categories | auto |
170
+ | columntransformer__pipeline-2__onehotencoder__drop | if_binary |
171
+ | columntransformer__pipeline-2__onehotencoder__dtype | <class 'numpy.float64'> |
172
+ | columntransformer__pipeline-2__onehotencoder__feature_name_combiner | concat |
173
+ | columntransformer__pipeline-2__onehotencoder__handle_unknown | ignore |
174
+ | columntransformer__pipeline-2__onehotencoder__max_categories | |
175
+ | columntransformer__pipeline-2__onehotencoder__min_frequency | |
176
+ | columntransformer__pipeline-2__onehotencoder__sparse_output | True |
177
+ | columntransformer__pipeline-3__memory | |
178
+ | columntransformer__pipeline-3__steps | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('ordinalencoder', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1))] |
179
+ | columntransformer__pipeline-3__transform_input | |
180
+ | columntransformer__pipeline-3__verbose | False |
181
+ | columntransformer__pipeline-3__simpleimputer | SimpleImputer(strategy='most_frequent') |
182
+ | columntransformer__pipeline-3__ordinalencoder | OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) |
183
+ | columntransformer__pipeline-3__simpleimputer__add_indicator | False |
184
+ | columntransformer__pipeline-3__simpleimputer__copy | True |
185
+ | columntransformer__pipeline-3__simpleimputer__fill_value | |
186
+ | columntransformer__pipeline-3__simpleimputer__keep_empty_features | False |
187
+ | columntransformer__pipeline-3__simpleimputer__missing_values | nan |
188
+ | columntransformer__pipeline-3__simpleimputer__strategy | most_frequent |
189
+ | columntransformer__pipeline-3__ordinalencoder__categories | auto |
190
+ | columntransformer__pipeline-3__ordinalencoder__dtype | <class 'numpy.float64'> |
191
+ | columntransformer__pipeline-3__ordinalencoder__encoded_missing_value | nan |
192
+ | columntransformer__pipeline-3__ordinalencoder__handle_unknown | use_encoded_value |
193
+ | columntransformer__pipeline-3__ordinalencoder__max_categories | |
194
+ | columntransformer__pipeline-3__ordinalencoder__min_frequency | |
195
+ | columntransformer__pipeline-3__ordinalencoder__unknown_value | -1 |
196
+ | ridge__alpha | 2.091 |
197
+ | ridge__copy_X | True |
198
+ | ridge__fit_intercept | True |
199
+ | ridge__max_iter | |
200
+ | ridge__positive | False |
201
+ | ridge__random_state | 42 |
202
+ | ridge__solver | auto |
203
+ | ridge__tol | 0.0001 |
204
+
205
+ </details>
206
+
207
+ ### Model Plot
208
+
209
+ <style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: #000;--sklearn-color-text-muted: #666;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
210
+ }#sk-container-id-1 {color: var(--sklearn-color-text);
211
+ }#sk-container-id-1 pre {padding: 0;
212
+ }#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
213
+ }#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
214
+ }#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
215
+ }#sk-container-id-1 div.sk-text-repr-fallback {display: none;
216
+ }div.sk-parallel-item,
217
+ div.sk-serial,
218
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
219
+ }/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
220
+ }#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
221
+ }#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
222
+ }#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
223
+ }#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
224
+ }#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
225
+ }/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
226
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
227
+ clickable and can be expanded/collapsed.
228
+ - Pipeline and ColumnTransformer use this feature and define the default style
229
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
230
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
231
+ }/* Toggleable label */
232
+ #sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: flex;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;align-items: start;justify-content: space-between;gap: 0.5em;
233
+ }#sk-container-id-1 label.sk-toggleable__label .caption {font-size: 0.6rem;font-weight: lighter;color: var(--sklearn-color-text-muted);
234
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
235
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
236
+ }/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
237
+ }#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
238
+ }#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
239
+ }#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
240
+ }#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
241
+ }#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
242
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
243
+ }#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
244
+ }/* Estimator-specific style *//* Colorize estimator box */
245
+ #sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
246
+ }#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
247
+ }#sk-container-id-1 div.sk-label label.sk-toggleable__label,
248
+ #sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
249
+ }/* On hover, darken the color of the background */
250
+ #sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
251
+ }/* Label box, darken color on hover, fitted */
252
+ #sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
253
+ }/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
254
+ }#sk-container-id-1 div.sk-label-container {text-align: center;
255
+ }/* Estimator-specific */
256
+ #sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
257
+ }#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
258
+ }/* on hover */
259
+ #sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
260
+ }#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
261
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
262
+ a:link.sk-estimator-doc-link,
263
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 0.5em;text-align: center;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
264
+ }.sk-estimator-doc-link.fitted,
265
+ a:link.sk-estimator-doc-link.fitted,
266
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
267
+ }/* On hover */
268
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
269
+ .sk-estimator-doc-link:hover,
270
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
271
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
272
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
273
+ .sk-estimator-doc-link.fitted:hover,
274
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
275
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
276
+ }/* Span, style for the box shown on hovering the info icon */
277
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
278
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
279
+ }.sk-estimator-doc-link:hover span {display: block;
280
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
281
+ }#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
282
+ }/* On hover */
283
+ #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
284
+ }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
285
+ }
286
+ </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;pipeline-1&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer()),(&#x27;standardscaler&#x27;,StandardScaler())]),[&#x27;Course_Avg_Roll_1y&#x27;,&#x27;Course_Min_Last_3y&#x27;,&#x27;Course_Max_Last_3y&#x27;,&#x27;Course_Std_Last_3y&#x27;]),(&#x27;pipeline-2&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;on...OrdinalEncoder(handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1))]),[&#x27;CourseLevel&#x27;,&#x27;Years_Since_Start&#x27;,&#x27;Prof_Courses_Taught&#x27;,&#x27;Year&#x27;]),(&#x27;drop&#x27;, &#x27;drop&#x27;,[&#x27;Reported&#x27;, &#x27;Section&#x27;,&#x27;Detail&#x27;, &#x27;Median&#x27;,&#x27;Percentile (25)&#x27;,&#x27;Percentile (75)&#x27;, &#x27;High&#x27;,&#x27;Low&#x27;, &#x27;&lt;50&#x27;, &#x27;50-54&#x27;,&#x27;55-59&#x27;, &#x27;60-63&#x27;, &#x27;64-67&#x27;,&#x27;68-71&#x27;, &#x27;72-75&#x27;, &#x27;76-79&#x27;,&#x27;80-84&#x27;, &#x27;85-89&#x27;,&#x27;90-100&#x27;])])),(&#x27;ridge&#x27;, Ridge(alpha=2.091, random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>Pipeline</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></div></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;pipeline-1&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer()),(&#x27;standardscaler&#x27;,StandardScaler())]),[&#x27;Course_Avg_Roll_1y&#x27;,&#x27;Course_Min_Last_3y&#x27;,&#x27;Course_Max_Last_3y&#x27;,&#x27;Course_Std_Last_3y&#x27;]),(&#x27;pipeline-2&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;on...OrdinalEncoder(handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1))]),[&#x27;CourseLevel&#x27;,&#x27;Years_Since_Start&#x27;,&#x27;Prof_Courses_Taught&#x27;,&#x27;Year&#x27;]),(&#x27;drop&#x27;, &#x27;drop&#x27;,[&#x27;Reported&#x27;, &#x27;Section&#x27;,&#x27;Detail&#x27;, &#x27;Median&#x27;,&#x27;Percentile (25)&#x27;,&#x27;Percentile (75)&#x27;, &#x27;High&#x27;,&#x27;Low&#x27;, &#x27;&lt;50&#x27;, &#x27;50-54&#x27;,&#x27;55-59&#x27;, &#x27;60-63&#x27;, &#x27;64-67&#x27;,&#x27;68-71&#x27;, &#x27;72-75&#x27;, &#x27;76-79&#x27;,&#x27;80-84&#x27;, &#x27;85-89&#x27;,&#x27;90-100&#x27;])])),(&#x27;ridge&#x27;, Ridge(alpha=2.091, random_state=42))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>columntransformer: ColumnTransformer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for columntransformer: ColumnTransformer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[(&#x27;pipeline-1&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer()),(&#x27;standardscaler&#x27;,StandardScaler())]),[&#x27;Course_Avg_Roll_1y&#x27;, &#x27;Course_Min_Last_3y&#x27;,&#x27;Course_Max_Last_3y&#x27;, &#x27;Course_Std_Last_3y&#x27;]),(&#x27;pipeline-2&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;onehotencoder&#x27;,OneHotEncoder(drop=&#x27;if_b...SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;ordinalencoder&#x27;,OrdinalEncoder(handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1))]),[&#x27;CourseLevel&#x27;, &#x27;Years_Since_Start&#x27;,&#x27;Prof_Courses_Taught&#x27;, &#x27;Year&#x27;]),(&#x27;drop&#x27;, &#x27;drop&#x27;,[&#x27;Reported&#x27;, &#x27;Section&#x27;, &#x27;Detail&#x27;, &#x27;Median&#x27;,&#x27;Percentile (25)&#x27;, &#x27;Percentile (75)&#x27;, &#x27;High&#x27;,&#x27;Low&#x27;, &#x27;&lt;50&#x27;, &#x27;50-54&#x27;, &#x27;55-59&#x27;, &#x27;60-63&#x27;,&#x27;64-67&#x27;, &#x27;68-71&#x27;, &#x27;72-75&#x27;, &#x27;76-79&#x27;, &#x27;80-84&#x27;,&#x27;85-89&#x27;, &#x27;90-100&#x27;])])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>pipeline-1</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;Course_Avg_Roll_1y&#x27;, &#x27;Course_Min_Last_3y&#x27;, &#x27;Course_Max_Last_3y&#x27;, &#x27;Course_Std_Last_3y&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SimpleImputer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>StandardScaler</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></div></label><div class="sk-toggleable__content fitted"><pre>StandardScaler()</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>pipeline-2</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;Campus&#x27;, &#x27;Session&#x27;, &#x27;SubjectCourse&#x27;, &#x27;Professor&#x27;, &#x27;Subject&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SimpleImputer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;most_frequent&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-8" type="checkbox" ><label for="sk-estimator-id-8" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>OneHotEncoder</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></div></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder(drop=&#x27;if_binary&#x27;, handle_unknown=&#x27;ignore&#x27;)</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-9" type="checkbox" ><label for="sk-estimator-id-9" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>pipeline-3</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;CourseLevel&#x27;, &#x27;Years_Since_Start&#x27;, &#x27;Prof_Courses_Taught&#x27;, &#x27;Year&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-10" type="checkbox" ><label for="sk-estimator-id-10" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SimpleImputer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;most_frequent&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-11" type="checkbox" ><label for="sk-estimator-id-11" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>OrdinalEncoder</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.OrdinalEncoder.html">?<span>Documentation for OrdinalEncoder</span></a></div></label><div class="sk-toggleable__content fitted"><pre>OrdinalEncoder(handle_unknown=&#x27;use_encoded_value&#x27;, unknown_value=-1)</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" ><label for="sk-estimator-id-12" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>drop</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;Reported&#x27;, &#x27;Section&#x27;, &#x27;Detail&#x27;, &#x27;Median&#x27;, &#x27;Percentile (25)&#x27;, &#x27;Percentile (75)&#x27;, &#x27;High&#x27;, &#x27;Low&#x27;, &#x27;&lt;50&#x27;, &#x27;50-54&#x27;, &#x27;55-59&#x27;, &#x27;60-63&#x27;, &#x27;64-67&#x27;, &#x27;68-71&#x27;, &#x27;72-75&#x27;, &#x27;76-79&#x27;, &#x27;80-84&#x27;, &#x27;85-89&#x27;, &#x27;90-100&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-13" type="checkbox" ><label for="sk-estimator-id-13" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>drop</div></div></label><div class="sk-toggleable__content fitted"><pre>drop</pre></div> </div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-14" type="checkbox" ><label for="sk-estimator-id-14" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>Ridge</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.linear_model.Ridge.html">?<span>Documentation for Ridge</span></a></div></label><div class="sk-toggleable__content fitted"><pre>Ridge(alpha=2.091, random_state=42)</pre></div> </div></div></div></div></div></div>
287
+
288
+ ## Evaluation Results
289
+
290
+ [More Information Needed]
291
+
292
+ # How to Get Started with the Model
293
+
294
+ [More Information Needed]
295
+
296
+ # Model Card Authors
297
+
298
+ This model card is written by following authors:
299
+
300
+ [More Information Needed]
301
+
302
+ # Model Card Contact
303
+
304
+ You can contact the model card authors through following channels:
305
+ [More Information Needed]
306
+
307
+ # Citation
308
+
309
+ Below you can find information related to citation.
310
+
311
+ **BibTeX:**
312
+ ```
313
+ [More Information Needed]
314
+ ```
config.json ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "Campus",
5
+ "Subject",
6
+ "Course",
7
+ "Year",
8
+ "Session",
9
+ "SubjectCourse",
10
+ "CourseLevel",
11
+ "Years_Since_Start",
12
+ "Course_Avg_Roll_1y",
13
+ "Course_Min_Last_3y",
14
+ "Course_Max_Last_3y",
15
+ "Course_Std_Last_3y",
16
+ "Professor",
17
+ "Prof_Courses_Taught",
18
+ "Prev_Median",
19
+ "Prof_Prev_Median",
20
+ "Prev_Percentile (25)",
21
+ "Prof_Prev_Percentile (25)",
22
+ "Prev_Percentile (75)",
23
+ "Prof_Prev_Percentile (75)",
24
+ "Prev_High",
25
+ "Prof_Prev_High",
26
+ "Prev_Low",
27
+ "Prof_Prev_Low",
28
+ "Prev_<50",
29
+ "Prof_Prev_<50",
30
+ "Prev_50-54",
31
+ "Prof_Prev_50-54",
32
+ "Prev_55-59",
33
+ "Prof_Prev_55-59",
34
+ "Prev_60-63",
35
+ "Prof_Prev_60-63",
36
+ "Prev_64-67",
37
+ "Prof_Prev_64-67",
38
+ "Prev_68-71",
39
+ "Prof_Prev_68-71",
40
+ "Prev_72-75",
41
+ "Prof_Prev_72-75",
42
+ "Prev_76-79",
43
+ "Prof_Prev_76-79",
44
+ "Prev_80-84",
45
+ "Prof_Prev_80-84",
46
+ "Prev_85-89",
47
+ "Prof_Prev_85-89",
48
+ "Prev_90-100",
49
+ "Prof_Prev_90-100"
50
+ ],
51
+ "environment": [
52
+ "scikit-learn=1.6.0"
53
+ ],
54
+ "example_input": {
55
+ "Campus": [
56
+ "UBCV"
57
+ ],
58
+ "Course": [
59
+ 110
60
+ ],
61
+ "CourseLevel": [
62
+ 1
63
+ ],
64
+ "Course_Avg_Roll_1y": [
65
+ 73.5864074445
66
+ ],
67
+ "Course_Max_Last_3y": [
68
+ 91.0
69
+ ],
70
+ "Course_Min_Last_3y": [
71
+ 71.898305085
72
+ ],
73
+ "Course_Std_Last_3y": [
74
+ 7.270712022509893
75
+ ],
76
+ "Prev_50-54": [
77
+ 1.0
78
+ ],
79
+ "Prev_55-59": [
80
+ 5.0
81
+ ],
82
+ "Prev_60-63": [
83
+ 11.0
84
+ ],
85
+ "Prev_64-67": [
86
+ 12.0
87
+ ],
88
+ "Prev_68-71": [
89
+ 14.0
90
+ ],
91
+ "Prev_72-75": [
92
+ 15.0
93
+ ],
94
+ "Prev_76-79": [
95
+ 11.0
96
+ ],
97
+ "Prev_80-84": [
98
+ 31.0
99
+ ],
100
+ "Prev_85-89": [
101
+ 23.0
102
+ ],
103
+ "Prev_90-100": [
104
+ 23.0
105
+ ],
106
+ "Prev_<50": [
107
+ 31.0
108
+ ],
109
+ "Prev_High": [
110
+ 97.0
111
+ ],
112
+ "Prev_Low": [
113
+ 5.0
114
+ ],
115
+ "Prev_Median": [
116
+ NaN
117
+ ],
118
+ "Prev_Percentile (25)": [
119
+ NaN
120
+ ],
121
+ "Prev_Percentile (75)": [
122
+ NaN
123
+ ],
124
+ "Prof_Courses_Taught": [
125
+ NaN
126
+ ],
127
+ "Prof_Prev_50-54": [
128
+ NaN
129
+ ],
130
+ "Prof_Prev_55-59": [
131
+ NaN
132
+ ],
133
+ "Prof_Prev_60-63": [
134
+ NaN
135
+ ],
136
+ "Prof_Prev_64-67": [
137
+ NaN
138
+ ],
139
+ "Prof_Prev_68-71": [
140
+ NaN
141
+ ],
142
+ "Prof_Prev_72-75": [
143
+ NaN
144
+ ],
145
+ "Prof_Prev_76-79": [
146
+ NaN
147
+ ],
148
+ "Prof_Prev_80-84": [
149
+ NaN
150
+ ],
151
+ "Prof_Prev_85-89": [
152
+ NaN
153
+ ],
154
+ "Prof_Prev_90-100": [
155
+ NaN
156
+ ],
157
+ "Prof_Prev_<50": [
158
+ NaN
159
+ ],
160
+ "Prof_Prev_High": [
161
+ NaN
162
+ ],
163
+ "Prof_Prev_Low": [
164
+ NaN
165
+ ],
166
+ "Prof_Prev_Median": [
167
+ NaN
168
+ ],
169
+ "Prof_Prev_Percentile (25)": [
170
+ NaN
171
+ ],
172
+ "Prof_Prev_Percentile (75)": [
173
+ NaN
174
+ ],
175
+ "Professor": [
176
+ ""
177
+ ],
178
+ "Session": [
179
+ "W"
180
+ ],
181
+ "Subject": [
182
+ "CPSC"
183
+ ],
184
+ "SubjectCourse": [
185
+ "CPSC110"
186
+ ],
187
+ "Year": [
188
+ 2018
189
+ ],
190
+ "Years_Since_Start": [
191
+ 4
192
+ ]
193
+ },
194
+ "model": {
195
+ "file": "ubcv_grade_predictor_ridge.joblib"
196
+ },
197
+ "model_format": "pickle",
198
+ "task": "tabular-regression"
199
+ }
200
+ }
ubcv_grade_predictor_ridge.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd92bfd4cb60fc4a8922982e03c30497d3d94a724369e144f521e6d4f610306d
3
+ size 1954779