from functools import partial import torch from torch import nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence import pdb def exists(val): return val is not None def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs def repetition_penalty_fn(logits, ctx, theta=1.2): w = torch.ones(logits.shape[-1], dtype=torch.float, device=logits.device) for i in torch.unique(ctx): w[i] = theta return logits/w class AutoregressiveWrapper(nn.Module): def __init__(self, net, ignore_index = 0, pad_value = 0): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.max_seq_len @torch.no_grad() def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, repetition_penalty=1.0, repetition_penalty_ctx=32, **kwargs): was_training = self.net.training num_dims = len(start_tokens.shape) if num_dims == 1: start_tokens = start_tokens[None, :] b, t = start_tokens.shape self.net.eval() out = start_tokens input_mask = kwargs.pop('mask', None) if input_mask is None: input_mask = torch.full_like(out, True, dtype=torch.bool, device=out.device) # in case of conditional generation, if enc_mask is not provided use the correct context_mask context_mask = kwargs.pop('context_mask', None) if 'context' in kwargs and not exists(context_mask): context = kwargs['context'] context_mask = torch.full(context.shape[:2], True, dtype=torch.bool, device=out.device) kwargs.update(context_mask = context_mask) for _ in range(seq_len): x = out[:, -self.max_seq_len:] input_mask = input_mask[:, -self.max_seq_len:] logits = self.net(x, mask=input_mask, **kwargs)[:, -1, :] if repetition_penalty > 1.0: logits = repetition_penalty_fn(logits, out[-repetition_penalty_ctx:], theta=repetition_penalty) filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) input_mask = F.pad(input_mask, (0, 1), value=True) if eos_token is not None and (sample == eos_token).all(): break out = out[:, t:] if num_dims == 1: out = out.squeeze(0) self.net.train(was_training) return out def forward(self, x, **kwargs): xi = x[:, :-1] xo = x[:, 1:] # help auto-solve an area of confusion around input masks in auto-regressive # if user supplies a mask that is only off by one from the source sequence, resolve it for them mask = kwargs.pop('mask', None) if mask is not None and mask.shape[1] == x.shape[1]: mask = mask[:, :-1] kwargs.update(mask = mask) out = self.net(xi, **kwargs) loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index) #pdb.set_trace() return loss