File size: 14,665 Bytes
4e40454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# -*- coding: utf-8 -*-
from __future__ import print_function
import json
import os
import struct
import sys
import platform
import re
import time
import traceback
import requests
import socket
import random
import math
import numpy as np
import torch
import logging
import datetime
from torch.optim.lr_scheduler import _LRScheduler
from torch import nn
import torch.nn.functional as F
from torch.nn.modules.loss import _WeightedLoss
def seed_all(seed_value, cuda_deterministic=False):
"""
设置所有的随机种子
"""
random.seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # faster, less reproducible
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def set_log(logfileName, rank=-1):
"""
master节点保存所有log,其他节点只保存warning及error
"""
log_file_folder = os.path.dirname(logfileName)
time_now = datetime.datetime.now()
logfileName = f'{logfileName}_{time_now.year}_{time_now.month}_{time_now.day}_{time_now.hour}_{time_now.minute}.log'
if not os.path.exists(log_file_folder):
os.makedirs(log_file_folder)
else:
pass
logging.basicConfig(level=logging.INFO if rank in [-1, 0] else logging.WARN,
format='[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s',
datefmt='[%X]',
handlers=[logging.FileHandler(logfileName), logging.StreamHandler()]
)
logger = logging.getLogger()
return logger
def save_ckpt(epoch, model, optimizer, scheduler, losses, model_name, ckpt_folder):
"""
保存模型checkpoint
"""
if not os.path.exists(ckpt_folder):
os.makedirs(ckpt_folder)
torch.save(
{
'epoch': epoch,
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'losses': losses,
},
f'{ckpt_folder}{model_name}_{epoch}.pth'
)
def save_simple_ckpt(model, model_name, ckpt_folder):
"""
保存模型checkpoint
"""
if not os.path.exists(ckpt_folder):
os.makedirs(ckpt_folder)
torch.save(
{
'model_state_dict': model.module.state_dict()
},
f'{ckpt_folder}{model_name}.pth'
)
def save_best_ckpt(epoch, model, optimizer, scheduler, losses, model_name, ckpt_folder):
"""
保存模型checkpoint
"""
if not os.path.exists(ckpt_folder):
os.makedirs(ckpt_folder)
torch.save(
{
'epoch': epoch,
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'losses': losses,
},
f'{ckpt_folder}{model_name}_best.pth'
)
def get_reduced(tensor, current_device, dest_device, world_size):
"""
将不同GPU上的变量或tensor集中在主GPU上,并得到均值
"""
tensor = tensor.clone().detach() if torch.is_tensor(tensor) else torch.tensor(tensor)
tensor = tensor.to(current_device)
torch.distributed.reduce(tensor, dst=dest_device)
tensor_mean = tensor.item() / world_size
return tensor_mean
def get_ndtensor_reduced(tensor, current_device, dest_device, world_size):
"""
将不同GPU上的变量或tensor集中在主GPU上,并得到均值, 需要是2维张量
"""
tensor = tensor.clone().detach() if torch.is_tensor(tensor) else torch.tensor(tensor)
tensor = tensor.to(current_device)
torch.distributed.reduce(tensor, dst=dest_device)
tensor_mean = torch.zeros(tensor.shape)
if len(tensor.shape) == 2:
for i in range(tensor.shape[0]):
for j in range(tensor.shape[1]):
tensor_mean[i,j] = tensor[i,j].item() / world_size
elif len(tensor.shape) == 1:
for i in range(tensor.shape[0]):
tensor_mean[i] = tensor[i].item() / world_size
return tensor_mean
def numel(m: torch.nn.Module, only_trainable: bool = False):
"""
returns the total number of parameters used by `m` (only counting
shared parameters once); if `only_trainable` is True, then only
includes parameters with `requires_grad = True`
"""
parameters = m.parameters()
if only_trainable:
parameters = list(p for p in parameters if p.requires_grad)
unique = dict((p.data_ptr(), p) for p in parameters).values()
return sum(p.numel() for p in unique)
def label_smooth(y, K, epsilon=0.1):
"""
Label smoothing for multiclass labels
One hot encode labels `y` over `K` classes. `y` should be of the form [1, 6, 3, etc.]
"""
m = len(y)
out = np.ones((m, K)) * epsilon / K
for index in range(m):
out[index][y[index] - 1] += 1 - epsilon
return torch.tensor(out)
class SequentialDistributedSampler(torch.utils.data.sampler.Sampler):
"""
Distributed Sampler that subsamples indicies sequentially,
making it easier to collate all results at the end.
Even though we only use this sampler for eval and predict (no training),
which means that the model params won't have to be synced (i.e. will not hang
for synchronization even if varied number of forward passes), we still add extra
samples to the sampler to make it evenly divisible (like in `DistributedSampler`)
to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.
"""
def __init__(self, dataset, batch_size, world_size, rank=None, num_replicas=None):
if num_replicas is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = world_size
if rank is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = torch.distributed.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.batch_size = batch_size
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.batch_size / self.num_replicas)) * self.batch_size
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += [indices[-1]] * (self.total_size - len(indices))
# subsample
indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
return iter(indices)
def __len__(self):
return self.num_samples
def distributed_concat(tensor, num_total_examples, world_size):
"""
合并不同进程的inference结果
"""
output_tensors = [tensor.clone() for _ in range(world_size)]
torch.distributed.all_gather(output_tensors, tensor)
concat = torch.cat(output_tensors, dim=0)
# truncate the dummy elements added by SequentialDistributedSampler
return concat[:num_total_examples]
class CosineAnnealingWarmupRestarts(_LRScheduler):
"""
optimizer (Optimizer): Wrapped optimizer.
first_cycle_steps (int): First cycle step size.
cycle_mult(float): Cycle steps magnification. Default: -1.
max_lr(float): First cycle's max learning rate. Default: 0.1.
min_lr(float): Min learning rate. Default: 0.001.
warmup_steps(int): Linear warmup step size. Default: 0.
gamma(float): Decrease rate of max learning rate by cycle. Default: 1.
last_epoch (int): The index of last epoch. Default: -1.
"""
def __init__(self,
optimizer : torch.optim.Optimizer,
first_cycle_steps : int,
cycle_mult : float = 1.,
max_lr : float = 0.1,
min_lr : float = 0.001,
warmup_steps : int = 0,
gamma : float = 1.,
last_epoch : int = -1
):
assert warmup_steps < first_cycle_steps
self.first_cycle_steps = first_cycle_steps # first cycle step size
self.cycle_mult = cycle_mult # cycle steps magnification
self.base_max_lr = max_lr # first max learning rate
self.max_lr = max_lr # max learning rate in the current cycle
self.min_lr = min_lr # min learning rate
self.warmup_steps = warmup_steps # warmup step size
self.gamma = gamma # decrease rate of max learning rate by cycle
self.cur_cycle_steps = first_cycle_steps # first cycle step size
self.cycle = 0 # cycle count
self.step_in_cycle = last_epoch # step size of the current cycle
super(CosineAnnealingWarmupRestarts, self).__init__(optimizer, last_epoch)
# set learning rate min_lr
self.init_lr()
def init_lr(self):
self.base_lrs = []
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.min_lr
self.base_lrs.append(self.min_lr)
def get_lr(self):
if self.step_in_cycle == -1:
return self.base_lrs
elif self.step_in_cycle < self.warmup_steps:
return [(self.max_lr - base_lr)*self.step_in_cycle / self.warmup_steps + base_lr for base_lr in self.base_lrs]
else:
return [base_lr + (self.max_lr - base_lr) \
* (1 + math.cos(math.pi * (self.step_in_cycle-self.warmup_steps) \
/ (self.cur_cycle_steps - self.warmup_steps))) / 2
for base_lr in self.base_lrs]
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.step_in_cycle = self.step_in_cycle + 1
if self.step_in_cycle >= self.cur_cycle_steps:
self.cycle += 1
self.step_in_cycle = self.step_in_cycle - self.cur_cycle_steps
self.cur_cycle_steps = int((self.cur_cycle_steps - self.warmup_steps) * self.cycle_mult) + self.warmup_steps
else:
if epoch >= self.first_cycle_steps:
if self.cycle_mult == 1.:
self.step_in_cycle = epoch % self.first_cycle_steps
self.cycle = epoch // self.first_cycle_steps
else:
n = int(math.log((epoch / self.first_cycle_steps * (self.cycle_mult - 1) + 1), self.cycle_mult))
self.cycle = n
self.step_in_cycle = epoch - int(self.first_cycle_steps * (self.cycle_mult ** n - 1) / (self.cycle_mult - 1))
self.cur_cycle_steps = self.first_cycle_steps * self.cycle_mult ** (n)
else:
self.cur_cycle_steps = self.first_cycle_steps
self.step_in_cycle = epoch
self.max_lr = self.base_max_lr * (self.gamma**self.cycle)
self.last_epoch = math.floor(epoch)
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
class DistanceLoss(_WeightedLoss):
"""
CrossEntropyLoss with Distance Weighted
"""
def __init__(self, weight=None, reduction='mean', ignore_index = None):
super().__init__(weight=weight, reduction=reduction)
self.weight = weight
self.reduction = reduction
self.ignore_index = ignore_index
def forward(self, inputs, targets):
if len(inputs.shape) > 2:
inputs = inputs.reshape(-1, inputs.size(-1))
if len(targets.shape) > 1:
targets = targets.reshape(-1)
if self.ignore_index is not None:
keep_index = (targets != self.ignore_index).nonzero(as_tuple=True)[0]
targets = torch.index_select(targets, 0, keep_index) #targets[targets != self.ignore_index]
inputs = torch.index_select(inputs, 0, keep_index)
lsm = F.log_softmax(inputs, -1)
targets = torch.empty(size=(targets.size(0), inputs.size(-1)), device=targets.device).fill_(0).scatter_(1, targets.data.unsqueeze(1), 1)
if self.weight is not None:
lsm = lsm * self.weight.unsqueeze(0)
loss = -(targets * lsm).sum(-1)
inputs = nn.Softmax(dim=-1)(inputs)[..., 1:-1].argmax(dim=-1) + 1
# print('inputs', inputs.device, inputs.shape)
targets = nn.Softmax(dim=-1)(targets)[..., 1:-1].argmax(dim=-1) + 1
# print('targets', targets.device, targets.shape)
distance = abs(inputs - targets) + 1e-2
# print('loss.shape', loss.shape)
# print('distance.shape', distance.shape)
loss = loss * distance
if self.reduction == 'sum':
loss = loss.sum()
elif self.reduction == 'mean':
loss = loss.mean()
return loss
class LabelSmoothCrossEntropyLoss(_WeightedLoss):
"""
CrossEntropyLoss with Label Somoothing
"""
def __init__(self, weight=None, reduction='mean', smoothing=0.0):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
self.reduction = reduction
@staticmethod
def _smooth_one_hot(targets: torch.Tensor, n_classes: int, smoothing=0.0):
assert 0 <= smoothing < 1
with torch.no_grad():
targets = torch.empty(size=(targets.size(0), n_classes),
device=targets.device) \
.fill_(smoothing / (n_classes - 1)) \
.scatter_(1, targets.data.unsqueeze(1), 1. - smoothing)
return targets
def forward(self, inputs, targets):
targets = LabelSmoothCrossEntropyLoss._smooth_one_hot(targets, inputs.size(-1),
self.smoothing)
lsm = F.log_softmax(inputs, -1)
if self.weight is not None:
lsm = lsm * self.weight.unsqueeze(0)
loss = -(targets * lsm).sum(-1)
if self.reduction == 'sum':
loss = loss.sum()
elif self.reduction == 'mean':
loss = loss.mean()
return loss |