File size: 9,103 Bytes
4e40454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from performer_pytorch import PerformerLM
from performer_pytorch.autoregressive_wrapper import AutoregressiveWrapper
import argparse
import random
import os
from tqdm import tqdm
import gzip
import numpy as np
import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
from torch.cuda.amp import autocast, GradScaler
from functools import reduce
import pandas as pd
from scipy import sparse
from sklearn.model_selection import train_test_split, ShuffleSplit, StratifiedShuffleSplit, StratifiedKFold
from sklearn.metrics import accuracy_score, f1_score, confusion_matrix, precision_recall_fscore_support, classification_report
from torch import nn
from torch.optim import Adam, SGD, AdamW
from torch.optim.lr_scheduler import StepLR, CosineAnnealingWarmRestarts, CyclicLR
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
import scanpy as sc
import anndata as ad
from utils import *
import pickle as pkl
from sophia import SophiaG
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# # constants
# NUM_BATCHES = int(1e5)
# BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 1e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
# GENERATE_LENGTH = 2048
# SEQ_LEN = 4096
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", type=int, default=-1, help='Local process rank.')
parser.add_argument("--bin_num", type=int, default=5, help='Number of bins.')
parser.add_argument("--gene_num", type=int, default=16906, help='Number of genes.')
parser.add_argument("--epoch", type=int, default=1, help='Number of epochs.')
parser.add_argument("--seed", type=int, default=2021, help='Random seed.')
parser.add_argument("--batch_size", type=int, default=8, help='Number of batch size.')
parser.add_argument("--learning_rate", type=float, default=1e-4, help='Learning rate.')
parser.add_argument("--grad_acc", type=int, default=60, help='Number of gradient accumulation.')
parser.add_argument("--valid_every", type=int, default=1, help='Number of training epochs between twice validation.')
parser.add_argument("--pos_embed", type=bool, default=True, help='Using Gene2vec encoding or not.')
parser.add_argument("--data_path", type=str, default='./data/panglao_human.h5ad', help='Path of data for finetune.')
parser.add_argument("--model_path", type=str, default='./panglao_pretrained.pth', help='Path of pretrained model.')
parser.add_argument("--ckpt_dir", type=str, default='./ckpts/', help='Directory of checkpoint to save.')
parser.add_argument("--model_name", type=str, default='finetune', help='Finetuned model name.')
args = parser.parse_args()
# rank = int(os.environ["RANK"])
# local_rank = args.local_rank
# is_master = local_rank == 0
SEED = args.seed
EPOCHS = args.epoch
BATCH_SIZE = args.batch_size
GRADIENT_ACCUMULATION = args.grad_acc
LEARNING_RATE = args.learning_rate
SEQ_LEN = args.gene_num + 1
VALIDATE_EVERY = args.valid_every
PATIENCE = 10
UNASSIGN_THRES = 0.0
CLASS = args.bin_num + 2
POS_EMBED_USING = args.pos_embed
model_name = args.model_name
ckpt_dir = args.ckpt_dir
# dist.init_process_group(backend='nccl')
# torch.cuda.set_device(local_rank)
# device = torch.device("cuda", local_rank)
# world_size = torch.distributed.get_world_size()
# seed_all(SEED + torch.distributed.get_rank())
# helpers
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return ''.join(list(map(decode_token, tokens)))
# instantiate model
model = PerformerLM(
num_tokens = args.bin_num + 2,
dim = 200,
depth = 3,
max_seq_len = SEQ_LEN,
heads = 5,
causal = False,
reversible = False,
use_scalenorm = True,
local_attn_heads = 0,
g2v_position_emb = POS_EMBED_USING,
generalized_attention = True
)
model = AutoregressiveWrapper(model)
model.cuda()
# prepare sc data
class SCDataset(Dataset):
def __init__(self, data, label):
super().__init__()
self.data = data
self.label = label
def __getitem__(self, index):
rand_start = random.randint(0, self.data.shape[0]-1)
full_seq = self.data[rand_start].toarray()[0]
full_seq[full_seq > (CLASS - 2)] = CLASS - 2
full_seq = torch.from_numpy(full_seq).long()
full_seq = torch.cat((full_seq, torch.tensor([0]))).to(device)
seq_label = self.label[rand_start]
return full_seq, seq_label
def __len__(self):
return self.data.shape[0]
class SCDatasetPretrain(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
# rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,))
# full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
rand_start = random.randint(0, self.data.shape[0]-1)
full_seq = self.data[rand_start].toarray()[0]
full_seq[full_seq > (CLASS - 2)] = CLASS - 2
full_seq = torch.from_numpy(full_seq).long()
full_seq = torch.cat((full_seq, torch.tensor([0])))
return full_seq.cuda()
def __len__(self):
return self.data.shape[0]
data = sc.read_h5ad(args.data_path)
#data = data[:1000, :]
# label_dict, label = np.unique(np.array(data.obs['cell_type']), return_inverse=True) # Convert strings categorical to integrate categorical, and label_dict[label] can be restored
# #store the label dict and label for prediction
# with open('label_dict', 'wb') as fp:
# pkl.dump(label_dict, fp)
# with open('label', 'wb') as fp:
# pkl.dump(label, fp)
# class_num = np.unique(label, return_counts=True)[1].tolist()
# class_weight = torch.tensor([(1 - (x / sum(class_num))) ** 2 for x in class_num])
# label = torch.from_numpy(label)
data = data.X
acc = []
f1 = []
f1w = []
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)
pred_list = pd.Series(['un'] * data.shape[0])
# sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=SEED)
# for index_train in sss.split(data):
# data_train = data[index_train]
# data_val = data[index_val]
# train_dataset = SCDatasetPretrain(data_train, SEQ_LEN)
# val_dataset = SCDatasetPretrain(data_val, SEQ_LEN)
# train_sampler = DistributedSampler(train_dataset)
# val_sampler = DistributedSampler(val_dataset)
# train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, sampler=train_sampler)
# val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, sampler=val_sampler)
index_train = int(data.shape[0]*0.8)
data_train = data[:index_train]
data_val = data[index_train:]
train_dataset = SCDatasetPretrain(data_train, SEQ_LEN)
val_dataset = SCDatasetPretrain(data_val, SEQ_LEN)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
# train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE))
# val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE))
# optimizer
optim = SophiaG(model.parameters(), lr=2e-4,
betas=(0.965, 0.99), rho = 0.01, weight_decay=1e-1)
# optim = torch.optim.SGD(model.parameters(), lr=1e-8, momentum=0.9)
# optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
scaler = GradScaler()
# training
for i in tqdm(range(EPOCHS), mininterval=10., desc='training'):
model.train()
# for __ in range(GRADIENT_ACCUMULATE_EVERY):
with autocast():
# loss = model(next(train_loader), return_loss = True)
for index, data_batch in enumerate(tqdm(train_loader)):
loss = model(data_batch, return_loss = True)
#print(f'training loss: {loss.item()}')
scaler.scale(loss).backward()
#print(f'training loss: {loss.item()}')
print(f'training loss: {loss.item()}')
scaler.unscale_(optim)
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
scaler.step(optim)
scaler.update()
optim.zero_grad()
# if i % VALIDATE_EVERY == 0:
# model.eval()
# with torch.no_grad():
# #loss = model(next(val_loader), return_loss = True)
# for index, data_batch in enumerate(tqdm(val_loader)):
# loss = model(data_batch, return_loss = True)
# print(f'validation loss: {loss.item()}')
if i % GENERATE_EVERY == 0 and i != 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print(f'%s \n\n %s', (prime, '*' * 100))
sample = model.generate(inp, GENERATE_LENGTH)
output_str = decode_tokens(sample)
print(output_str)
# save model
print('save model')
checkpoint = {'state_dict': model.state_dict(),'optimizer' :optim.state_dict()}
torch.save(checkpoint, os.path.join(ckpt_dir, 'model_gene_attn.pth'))
a=1 |