File size: 9,103 Bytes
4e40454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from performer_pytorch import PerformerLM
from performer_pytorch.autoregressive_wrapper import AutoregressiveWrapper

import argparse
import random
import os
from tqdm import tqdm
import gzip
import numpy as np
import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
from torch.cuda.amp import autocast, GradScaler

from functools import reduce
import pandas as pd
from scipy import sparse
from sklearn.model_selection import train_test_split, ShuffleSplit, StratifiedShuffleSplit, StratifiedKFold
from sklearn.metrics import accuracy_score, f1_score, confusion_matrix, precision_recall_fscore_support, classification_report
from torch import nn
from torch.optim import Adam, SGD, AdamW
from torch.optim.lr_scheduler import StepLR, CosineAnnealingWarmRestarts, CyclicLR
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist

import scanpy as sc
import anndata as ad
from utils import *
import pickle as pkl

from sophia import SophiaG


os.environ['CUDA_LAUNCH_BLOCKING'] = '1'

# # constants

# NUM_BATCHES = int(1e5)
# BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 1e-4
VALIDATE_EVERY  = 100
GENERATE_EVERY  = 500
# GENERATE_LENGTH = 2048
# SEQ_LEN = 4096


parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", type=int, default=-1, help='Local process rank.')
parser.add_argument("--bin_num", type=int, default=5, help='Number of bins.')
parser.add_argument("--gene_num", type=int, default=16906, help='Number of genes.')
parser.add_argument("--epoch", type=int, default=1, help='Number of epochs.')
parser.add_argument("--seed", type=int, default=2021, help='Random seed.')
parser.add_argument("--batch_size", type=int, default=8, help='Number of batch size.')
parser.add_argument("--learning_rate", type=float, default=1e-4, help='Learning rate.')
parser.add_argument("--grad_acc", type=int, default=60, help='Number of gradient accumulation.')
parser.add_argument("--valid_every", type=int, default=1, help='Number of training epochs between twice validation.')
parser.add_argument("--pos_embed", type=bool, default=True, help='Using Gene2vec encoding or not.')
parser.add_argument("--data_path", type=str, default='./data/panglao_human.h5ad', help='Path of data for finetune.')
parser.add_argument("--model_path", type=str, default='./panglao_pretrained.pth', help='Path of pretrained model.')
parser.add_argument("--ckpt_dir", type=str, default='./ckpts/', help='Directory of checkpoint to save.')
parser.add_argument("--model_name", type=str, default='finetune', help='Finetuned model name.')

args = parser.parse_args()
# rank = int(os.environ["RANK"])
# local_rank = args.local_rank
# is_master = local_rank == 0

SEED = args.seed
EPOCHS = args.epoch
BATCH_SIZE = args.batch_size
GRADIENT_ACCUMULATION = args.grad_acc
LEARNING_RATE = args.learning_rate
SEQ_LEN = args.gene_num + 1
VALIDATE_EVERY = args.valid_every

PATIENCE = 10
UNASSIGN_THRES = 0.0

CLASS = args.bin_num + 2
POS_EMBED_USING = args.pos_embed

model_name = args.model_name
ckpt_dir = args.ckpt_dir

# dist.init_process_group(backend='nccl')
# torch.cuda.set_device(local_rank)
# device = torch.device("cuda", local_rank)
# world_size = torch.distributed.get_world_size()

# seed_all(SEED + torch.distributed.get_rank())



# helpers

def cycle(loader):
    while True:
        for data in loader:
            yield data

def decode_token(token):
    return str(chr(max(32, token)))

def decode_tokens(tokens):
    return ''.join(list(map(decode_token, tokens)))

# instantiate model

model = PerformerLM(
    num_tokens = args.bin_num + 2,
    dim = 200,
    depth = 3,
    max_seq_len = SEQ_LEN,
    heads = 5,
    causal = False,
    reversible = False,
    use_scalenorm = True,
    local_attn_heads = 0,
    g2v_position_emb = POS_EMBED_USING,
    generalized_attention = True
)

model = AutoregressiveWrapper(model)
model.cuda()



# prepare sc data

class SCDataset(Dataset):
    def __init__(self, data, label):
        super().__init__()
        self.data = data
        self.label = label

    def __getitem__(self, index):
        rand_start = random.randint(0, self.data.shape[0]-1)
        full_seq = self.data[rand_start].toarray()[0]
        full_seq[full_seq > (CLASS - 2)] = CLASS - 2
        full_seq = torch.from_numpy(full_seq).long()
        full_seq = torch.cat((full_seq, torch.tensor([0]))).to(device)
        seq_label = self.label[rand_start]
        return full_seq, seq_label

    def __len__(self):
        return self.data.shape[0]
    
class SCDatasetPretrain(Dataset):
    def __init__(self, data, seq_len):
        super().__init__()
        self.data = data
        self.seq_len = seq_len

    def __getitem__(self, index):
        # rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,))
        # full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
        
        rand_start = random.randint(0, self.data.shape[0]-1)
        full_seq = self.data[rand_start].toarray()[0]
        full_seq[full_seq > (CLASS - 2)] = CLASS - 2
        full_seq = torch.from_numpy(full_seq).long()
        full_seq = torch.cat((full_seq, torch.tensor([0])))
        
        return full_seq.cuda()

    def __len__(self):
        return self.data.shape[0]
    

data = sc.read_h5ad(args.data_path)
#data = data[:1000, :]
# label_dict, label = np.unique(np.array(data.obs['cell_type']), return_inverse=True)  # Convert strings categorical to integrate categorical, and label_dict[label] can be restored
# #store the label dict and label for prediction
# with open('label_dict', 'wb') as fp:
#     pkl.dump(label_dict, fp)
# with open('label', 'wb') as fp:
#     pkl.dump(label, fp)
# class_num = np.unique(label, return_counts=True)[1].tolist()
# class_weight = torch.tensor([(1 - (x / sum(class_num))) ** 2 for x in class_num])
# label = torch.from_numpy(label)
data = data.X

acc = []
f1 = []
f1w = []
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)
pred_list = pd.Series(['un'] * data.shape[0])

# sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=SEED)
# for index_train in sss.split(data):
#     data_train = data[index_train]
#     data_val = data[index_val]
#     train_dataset = SCDatasetPretrain(data_train, SEQ_LEN)
#     val_dataset = SCDatasetPretrain(data_val, SEQ_LEN)

# train_sampler = DistributedSampler(train_dataset)
# val_sampler = DistributedSampler(val_dataset)
# train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, sampler=train_sampler)
# val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, sampler=val_sampler)

index_train = int(data.shape[0]*0.8)
data_train = data[:index_train]
data_val = data[index_train:]
train_dataset = SCDatasetPretrain(data_train, SEQ_LEN)
val_dataset = SCDatasetPretrain(data_val, SEQ_LEN)

train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
# train_loader  = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE))
# val_loader    = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE))

# optimizer

optim = SophiaG(model.parameters(), lr=2e-4, 
                    betas=(0.965, 0.99), rho = 0.01, weight_decay=1e-1)
# optim = torch.optim.SGD(model.parameters(), lr=1e-8, momentum=0.9)
# optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
scaler = GradScaler()

# training

for i in tqdm(range(EPOCHS), mininterval=10., desc='training'):
    model.train()

    # for __ in range(GRADIENT_ACCUMULATE_EVERY):
    with autocast():
        # loss = model(next(train_loader), return_loss = True)
        for index, data_batch in enumerate(tqdm(train_loader)):
            loss = model(data_batch, return_loss = True)
            #print(f'training loss: {loss.item()}')
                
        scaler.scale(loss).backward()
        #print(f'training loss: {loss.item()}')

    print(f'training loss: {loss.item()}')

    scaler.unscale_(optim)
    torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
    scaler.step(optim)
    scaler.update()
    optim.zero_grad()

    # if i % VALIDATE_EVERY == 0:
    #     model.eval()
    #     with torch.no_grad():
    #         #loss = model(next(val_loader), return_loss = True)
    #         for index, data_batch in enumerate(tqdm(val_loader)):
    #             loss = model(data_batch, return_loss = True)
    #             print(f'validation loss: {loss.item()}')

    if i % GENERATE_EVERY == 0 and i != 0:
        model.eval()
        inp = random.choice(val_dataset)[:-1]
        prime = decode_tokens(inp)
        print(f'%s \n\n %s', (prime, '*' * 100))

        sample = model.generate(inp, GENERATE_LENGTH)
        output_str = decode_tokens(sample)
        print(output_str)

# save model
print('save model')
checkpoint = {'state_dict': model.state_dict(),'optimizer' :optim.state_dict()}
torch.save(checkpoint, os.path.join(ckpt_dir, 'model_gene_attn.pth'))

a=1