--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: twitter_sentiment_small_4 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/abson-/twitter_sentiment_small/runs/c6phae8a) # twitter_sentiment_small_4 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4844 - Accuracy: 0.824 - F1-score: 0.8057 - Precision: 0.8295 - Recall: 0.7833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:| | 0.643 | 0.0889 | 100 | 0.5191 | 0.774 | 0.7466 | 0.7817 | 0.7146 | | 0.4779 | 0.1778 | 200 | 0.4895 | 0.787 | 0.7677 | 0.7805 | 0.7554 | | 0.4069 | 0.2667 | 300 | 0.4630 | 0.795 | 0.7745 | 0.7946 | 0.7554 | | 0.4215 | 0.3556 | 400 | 0.4562 | 0.8 | 0.7669 | 0.8393 | 0.7060 | | 0.4187 | 0.4444 | 500 | 0.4350 | 0.807 | 0.7992 | 0.7758 | 0.8240 | | 0.4197 | 0.5333 | 600 | 0.4497 | 0.806 | 0.7785 | 0.8317 | 0.7318 | | 0.4034 | 0.6222 | 700 | 0.4335 | 0.817 | 0.8111 | 0.7813 | 0.8433 | | 0.4058 | 0.7111 | 800 | 0.4231 | 0.804 | 0.7996 | 0.7637 | 0.8391 | | 0.4044 | 0.8 | 900 | 0.4404 | 0.805 | 0.8056 | 0.7523 | 0.8670 | | 0.3678 | 0.8889 | 1000 | 0.4000 | 0.815 | 0.8095 | 0.7782 | 0.8433 | | 0.3791 | 0.9778 | 1100 | 0.4451 | 0.814 | 0.814 | 0.7622 | 0.8734 | | 0.3109 | 1.0667 | 1200 | 0.5034 | 0.817 | 0.8039 | 0.8030 | 0.8047 | | 0.2999 | 1.1556 | 1300 | 0.4740 | 0.812 | 0.8105 | 0.7643 | 0.8627 | | 0.2902 | 1.2444 | 1400 | 0.4517 | 0.825 | 0.8066 | 0.8314 | 0.7833 | | 0.2664 | 1.3333 | 1500 | 0.4646 | 0.83 | 0.8225 | 0.8008 | 0.8455 | | 0.2826 | 1.4222 | 1600 | 0.4844 | 0.824 | 0.8057 | 0.8295 | 0.7833 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1