File size: 1,382 Bytes
15325f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- abhishek/autonlp-data-bbc-roberta
co2_eq_emissions: 1.9859980179658823
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 37249301
- CO2 Emissions (in grams): 1.9859980179658823
## Validation Metrics
- Loss: 0.06406362354755402
- Accuracy: 0.9833887043189369
- Macro F1: 0.9832763664701248
- Micro F1: 0.9833887043189369
- Weighted F1: 0.9833288528828136
- Macro Precision: 0.9847257743677181
- Micro Precision: 0.9833887043189369
- Weighted Precision: 0.9835392869652073
- Macro Recall: 0.982101705176067
- Micro Recall: 0.9833887043189369
- Weighted Recall: 0.9833887043189369
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fabhishek%2Fautonlp-bbc-roberta-37249301%3C%2Fspan%3E
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-bbc-roberta-37249301", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-bbc-roberta-37249301", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |