File size: 7,322 Bytes
5a6eb75 1c203f5 035c7d7 5a6eb75 6338b24 5a6eb75 ef2b5f4 5a6eb75 be6a9ef 5a6eb75 588dc6e 5a6eb75 7d6d6f2 5a6eb75 9853dcf 5a6eb75 6338b24 5a6eb75 035c7d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
language:
- ta
- en
license: llama2
model-index:
- name: tamil-llama-13b-instruct-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 54.52
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-13b-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 79.35
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-13b-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-13b-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.22
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-13b-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.56
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-13b-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 7.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-13b-instruct-v0.1
name: Open LLM Leaderboard
---
# Tamil LLaMA 13B Instruct v0.1
Welcome to the inaugural release of the Tamil LLaMA 13B instruct model – an important step in advancing LLMs for the Tamil language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks.
To dive deep into the development and capabilities of this model, please read the [research paper](https://arxiv.org/abs/2311.05845) and the [introductory blog post (WIP) ]() that outlines our journey and the model's potential impact.
## Model description
The Tamil LLaMA models have been enhanced and tailored specifically with an extensive Tamil vocabulary of 16,000 tokens, building upon the foundation set by the original LLaMA-2.
- **Model type:** A 13B parameter GPT-like model fine-tuned on [Tamil-Alpaca-Orca](https://huggingface.co/datasets/abhinand/tamil-alpaca-orca) - a mix of Tamil-translated [Stanford-Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and a subset of [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca) datasets.
- **Language(s):** Tamil and English
- **License:** GNU General Public License v3.0
- **Finetuned from model:** [abhinand/tamil-llama-13b-base-v0.1](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1)
- **Training Precision:** `float16`
- **Code:** [GitHub](https://github.com/abhinand5/tamil-llama)
## Prompting Format
**Prompt Template Without Input**
```
{system_prompt}
### Instruction:
{instruction or query}
### Response:
{response}
```
**Prompt Template With Input**
```
{system_prompt}
### Instruction:
{instruction or query}
### Input:
{input}
### Response:
{response}
```
## Related Models
| Model | Type | Data | Base Model | # Params | Download Links |
|--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------|
| Tamil LLaMA 7B Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) |
| Tamil LLaMA 13B Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1) |
| Tamil LLaMA 7B Instruct | Instruction following model | 145k instructions | Tamil LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) |
| Tamil LLaMA 13B Instruct | Instruction following model | 145k instructions | Tamil LLaMA 13B Base | 13B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) |
## Usage Note
It's important to note that the models have not undergone detoxification. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications.
## Meet the Developers
Get to know the creators behind this innovative model and follow their contributions to the field:
- [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/)
## Citation
If you use this model or any of the the Tamil-Llama datasets in your research, please cite:
```bibtex
@misc{balachandran2023tamilllama,
title={Tamil-Llama: A New Tamil Language Model Based on Llama 2},
author={Abhinand Balachandran},
year={2023},
eprint={2311.05845},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abhinand__tamil-llama-13b-instruct-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |51.59|
|AI2 Reasoning Challenge (25-Shot)|54.52|
|HellaSwag (10-Shot) |79.35|
|MMLU (5-Shot) |50.37|
|TruthfulQA (0-shot) |41.22|
|Winogrande (5-shot) |76.56|
|GSM8k (5-shot) | 7.51|
|