aavvmm commited on
Commit
72cfdfb
·
verified ·
1 Parent(s): 48b726e

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +144 -0
  2. config.yaml +16 -0
  3. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - pyannote
4
+ - pyannote-audio
5
+ - pyannote-audio-model
6
+ - audio
7
+ - voice
8
+ - speech
9
+ - speaker
10
+ - speaker-segmentation
11
+ - voice-activity-detection
12
+ - overlapped-speech-detection
13
+ - resegmentation
14
+ license: mit
15
+ inference: false
16
+ extra_gated_prompt: "The collected information will help acquire a better knowledge of pyannote.audio userbase and help its maintainers apply for grants to improve it further. If you are an academic researcher, please cite the relevant papers in your own publications using the model. If you work for a company, please consider contributing back to pyannote.audio development (e.g. through unrestricted gifts). We also provide scientific consulting services around speaker diarization and machine listening."
17
+ extra_gated_fields:
18
+ Company/university: text
19
+ Website: text
20
+ I plan to use this model for (task, type of audio data, etc): text
21
+ ---
22
+
23
+ Using this open-source model in production?
24
+ Make the most of it thanks to our [consulting services](https://herve.niderb.fr/consulting.html).
25
+
26
+
27
+ # 🎹 Speaker segmentation
28
+
29
+ [Paper](http://arxiv.org/abs/2104.04045) | [Demo](https://huggingface.co/spaces/pyannote/pretrained-pipelines) | [Blog post](https://herve.niderb.fr/fastpages/2022/10/23/One-speaker-segmentation-model-to-rule-them-all)
30
+
31
+ ![Example](example.png)
32
+
33
+ ## Usage
34
+
35
+ Relies on pyannote.audio 2.1.1: see [installation instructions](https://github.com/pyannote/pyannote-audio).
36
+
37
+ ```python
38
+ # 1. visit hf.co/pyannote/segmentation and accept user conditions
39
+ # 2. visit hf.co/settings/tokens to create an access token
40
+ # 3. instantiate pretrained model
41
+ from pyannote.audio import Model
42
+ model = Model.from_pretrained("pyannote/segmentation",
43
+ use_auth_token="ACCESS_TOKEN_GOES_HERE")
44
+ ```
45
+
46
+ ### Voice activity detection
47
+
48
+ ```python
49
+ from pyannote.audio.pipelines import VoiceActivityDetection
50
+ pipeline = VoiceActivityDetection(segmentation=model)
51
+ HYPER_PARAMETERS = {
52
+ # onset/offset activation thresholds
53
+ "onset": 0.5, "offset": 0.5,
54
+ # remove speech regions shorter than that many seconds.
55
+ "min_duration_on": 0.0,
56
+ # fill non-speech regions shorter than that many seconds.
57
+ "min_duration_off": 0.0
58
+ }
59
+ pipeline.instantiate(HYPER_PARAMETERS)
60
+ vad = pipeline("audio.wav")
61
+ # `vad` is a pyannote.core.Annotation instance containing speech regions
62
+ ```
63
+
64
+ ### Overlapped speech detection
65
+
66
+ ```python
67
+ from pyannote.audio.pipelines import OverlappedSpeechDetection
68
+ pipeline = OverlappedSpeechDetection(segmentation=model)
69
+ pipeline.instantiate(HYPER_PARAMETERS)
70
+ osd = pipeline("audio.wav")
71
+ # `osd` is a pyannote.core.Annotation instance containing overlapped speech regions
72
+ ```
73
+
74
+ ### Resegmentation
75
+
76
+ ```python
77
+ from pyannote.audio.pipelines import Resegmentation
78
+ pipeline = Resegmentation(segmentation=model,
79
+ diarization="baseline")
80
+ pipeline.instantiate(HYPER_PARAMETERS)
81
+ resegmented_baseline = pipeline({"audio": "audio.wav", "baseline": baseline})
82
+ # where `baseline` should be provided as a pyannote.core.Annotation instance
83
+ ```
84
+
85
+ ### Raw scores
86
+
87
+ ```python
88
+ from pyannote.audio import Inference
89
+ inference = Inference(model)
90
+ segmentation = inference("audio.wav")
91
+ # `segmentation` is a pyannote.core.SlidingWindowFeature
92
+ # instance containing raw segmentation scores like the
93
+ # one pictured above (output)
94
+ ```
95
+
96
+
97
+ ## Citation
98
+
99
+ ```bibtex
100
+ @inproceedings{Bredin2021,
101
+ Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}},
102
+ Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine},
103
+ Booktitle = {Proc. Interspeech 2021},
104
+ Address = {Brno, Czech Republic},
105
+ Month = {August},
106
+ Year = {2021},
107
+ ```
108
+
109
+ ```bibtex
110
+ @inproceedings{Bredin2020,
111
+ Title = {{pyannote.audio: neural building blocks for speaker diarization}},
112
+ Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
113
+ Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
114
+ Address = {Barcelona, Spain},
115
+ Month = {May},
116
+ Year = {2020},
117
+ }
118
+ ```
119
+
120
+ ## Reproducible research
121
+
122
+ In order to reproduce the results of the paper ["End-to-end speaker segmentation for overlap-aware resegmentation
123
+ "](https://arxiv.org/abs/2104.04045), use `pyannote/segmentation@Interspeech2021` with the following hyper-parameters:
124
+
125
+ | Voice activity detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
126
+ | ------------------------ | ------- | -------- | ----------------- | ------------------ |
127
+ | AMI Mix-Headset | 0.684 | 0.577 | 0.181 | 0.037 |
128
+ | DIHARD3 | 0.767 | 0.377 | 0.136 | 0.067 |
129
+ | VoxConverse | 0.767 | 0.713 | 0.182 | 0.501 |
130
+
131
+ | Overlapped speech detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
132
+ | --------------------------- | ------- | -------- | ----------------- | ------------------ |
133
+ | AMI Mix-Headset | 0.448 | 0.362 | 0.116 | 0.187 |
134
+ | DIHARD3 | 0.430 | 0.320 | 0.091 | 0.144 |
135
+ | VoxConverse | 0.587 | 0.426 | 0.337 | 0.112 |
136
+
137
+ | Resegmentation of VBx | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
138
+ | --------------------- | ------- | -------- | ----------------- | ------------------ |
139
+ | AMI Mix-Headset | 0.542 | 0.527 | 0.044 | 0.705 |
140
+ | DIHARD3 | 0.592 | 0.489 | 0.163 | 0.182 |
141
+ | VoxConverse | 0.537 | 0.724 | 0.410 | 0.563 |
142
+
143
+ Expected outputs (and VBx baseline) are also provided in the `/reproducible_research` sub-directories.
144
+
config.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task:
2
+ _target_: pyannote.audio.tasks.Segmentation
3
+ duration: 5.0
4
+ max_num_speakers: 3
5
+ model:
6
+ _target_: pyannote.audio.models.segmentation.PyanNet
7
+ sincnet:
8
+ stride: 10
9
+ lstm:
10
+ hidden_size: 128
11
+ num_layers: 4
12
+ bidirectional: true
13
+ monolithic: true
14
+ linear:
15
+ hidden_size: 128
16
+ num_layers: 2
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b5b3216d60a2d32fc086b47ea8c67589aaeb26b7e07fcbe620d6d0b83e209ea
3
+ size 17719103