---
library_name: transformers
license: apache-2.0
datasets:
- We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs
language:
- ko
pipeline_tag: text-generation
---
**Exllamav2** quant (**exl2** / **2.5 bpw**) made with ExLlamaV2 v0.0.21
Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|
**[2.2](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-2_2bpw_exl2)** | 4051 MB | 6 |
|**[2.5](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-2_5bpw_exl2)** | 4510 MB | 6 |
|**[3.0](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-3_0bpw_exl2)** | 5341 MB | 6 |
|**[3.5](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-3_5bpw_exl2)** | 6173 MB | 6 |
|**[3.75](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-3_75bpw_exl2)** | 6589 MB | 6 |
|**[4.0](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-4_0bpw_exl2)** | 7004 MB | 6 |
|**[4.25](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-4_25bpw_exl2)** | 7420 MB | 6 |
|**[5.0](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-5_0bpw_exl2)** | 8670 MB | 6 |
|**[6.0](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-6_0bpw_exl2)** | 10348 MB | 8 |
|**[6.5](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-6_5bpw_exl2)** | 11183 MB | 8 |
|**[8.0](https://huggingface.co/Zoyd/x2bee_POLAR-14B-DPO-v1.3-8_0bpw_exl2)** | 12815 MB | 8 |
# Model Card for Model ID
## Model Details
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65f3ee48b1a907c6aa6d8f06%2FnGbRfMQEfAW_aDwisKn9T.png)
## Model Description
POLAR is a Korean LLM developed by Plateer's AI-lab. It was inspired by Upstage's SOLAR. We will continue to evolve this model and hope to contribute to the Korean LLM ecosystem.
- **Developed by:** AI-Lab of Plateer(Woomun Jung, Eunsoo Ha, MinYoung Joo, Seongjun Son)
- **Model type:** Language model
- **Language(s) (NLP):** ko
- **License:** apache-2.0
- Parent Model: x2bee/POLAR-14B-v0.2
## Direct Use
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("x2bee/POLAR-14B-DPO-v1.3")
model = AutoModelForCausalLM.from_pretrained("x2bee/POLAR-14B-DPO-v1.3")
```
## Downstream Use [Optional]
## Out-of-Scope Use
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
# Training Details
## Training Data
More information on training data needed
## Training Procedure
### Preprocessing
More information needed
### Speeds, Sizes, Times
More information needed
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
More information needed
### Factors
More information needed
### Metrics
More information needed
## Results
More information needed
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
More information needed
# Citation
**BibTeX:**
More information needed
**APA:**
More information needed
# Glossary [optional]
More information needed
# More Information [optional]
If you would like more information about our company, please visit the link below.
[tech.x2bee.com](https://tech.x2bee.com/)
# Model Card Authors [optional]
Woomun Jung, MinYoung Joo, Eunsu Ha, Seungjun Son
# Model Card Contact
More information needed
# How to Get Started with the Model
Use the code below to get started with the model.
Click to expand
More information needed