ZijianZhang commited on
Commit
db1d8bf
·
verified ·
1 Parent(s): aa1ac2b

Upload 16 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<PAD>": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,3194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "arch_specifier": "no-align+fused-gelu-mlp",
3
+ "architectures": [
4
+ "OpenVLAForActionPrediction"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_prismatic.OpenVLAConfig",
8
+ "AutoModelForVision2Seq": "modeling_prismatic.OpenVLAForActionPrediction"
9
+ },
10
+ "hf_llm_id": "meta-llama/Llama-2-7b-hf",
11
+ "image_resize_strategy": "resize-naive",
12
+ "image_sizes": [
13
+ 224,
14
+ 224
15
+ ],
16
+ "llm_backbone_id": "llama2-7b-pure",
17
+ "llm_max_length": 2048,
18
+ "model_type": "openvla",
19
+ "n_action_bins": 256,
20
+ "norm_stats": {
21
+ "austin_buds_dataset_converted_externally_to_rlds": {
22
+ "action": {
23
+ "mask": [
24
+ true,
25
+ true,
26
+ true,
27
+ true,
28
+ true,
29
+ true,
30
+ false
31
+ ],
32
+ "max": [
33
+ 1.0,
34
+ 1.0,
35
+ 1.0,
36
+ 0.0,
37
+ 0.0,
38
+ 0.0,
39
+ 1.0
40
+ ],
41
+ "mean": [
42
+ -0.07678354531526566,
43
+ 0.0036849044263362885,
44
+ 0.05644911900162697,
45
+ 0.0,
46
+ 0.0,
47
+ 0.0,
48
+ 0.3510494828224182
49
+ ],
50
+ "min": [
51
+ -1.0,
52
+ -1.0,
53
+ -1.0,
54
+ 0.0,
55
+ 0.0,
56
+ 0.0,
57
+ 0.0
58
+ ],
59
+ "q01": [
60
+ -1.0,
61
+ -0.9599999785423279,
62
+ -0.8714285492897034,
63
+ 0.0,
64
+ 0.0,
65
+ 0.0,
66
+ 0.0
67
+ ],
68
+ "q99": [
69
+ 1.0,
70
+ 0.8600000143051147,
71
+ 1.0,
72
+ 0.0,
73
+ 0.0,
74
+ 0.0,
75
+ 1.0
76
+ ],
77
+ "std": [
78
+ 0.6367740631103516,
79
+ 0.37889179587364197,
80
+ 0.47796326875686646,
81
+ 0.0,
82
+ 0.0,
83
+ 0.0,
84
+ 0.47721168398857117
85
+ ]
86
+ },
87
+ "num_trajectories": 50,
88
+ "num_transitions": 34112,
89
+ "proprio": {
90
+ "max": [
91
+ 0.0,
92
+ 0.0,
93
+ 0.0,
94
+ 0.0,
95
+ 0.0,
96
+ 0.0,
97
+ 0.0
98
+ ],
99
+ "mean": [
100
+ 0.0,
101
+ 0.0,
102
+ 0.0,
103
+ 0.0,
104
+ 0.0,
105
+ 0.0,
106
+ 0.0
107
+ ],
108
+ "min": [
109
+ 0.0,
110
+ 0.0,
111
+ 0.0,
112
+ 0.0,
113
+ 0.0,
114
+ 0.0,
115
+ 0.0
116
+ ],
117
+ "q01": [
118
+ 0.0,
119
+ 0.0,
120
+ 0.0,
121
+ 0.0,
122
+ 0.0,
123
+ 0.0,
124
+ 0.0
125
+ ],
126
+ "q99": [
127
+ 0.0,
128
+ 0.0,
129
+ 0.0,
130
+ 0.0,
131
+ 0.0,
132
+ 0.0,
133
+ 0.0
134
+ ],
135
+ "std": [
136
+ 0.0,
137
+ 0.0,
138
+ 0.0,
139
+ 0.0,
140
+ 0.0,
141
+ 0.0,
142
+ 0.0
143
+ ]
144
+ }
145
+ },
146
+ "austin_sailor_dataset_converted_externally_to_rlds": {
147
+ "action": {
148
+ "mask": [
149
+ true,
150
+ true,
151
+ true,
152
+ true,
153
+ true,
154
+ true,
155
+ false
156
+ ],
157
+ "max": [
158
+ 1.0,
159
+ 1.0,
160
+ 1.0,
161
+ 0.0,
162
+ 0.0,
163
+ 0.375,
164
+ 1.0
165
+ ],
166
+ "mean": [
167
+ 0.011825348250567913,
168
+ 0.006461074110120535,
169
+ 0.06023626774549484,
170
+ 0.0,
171
+ 0.0,
172
+ 0.0016465914668515325,
173
+ 0.5260950326919556
174
+ ],
175
+ "min": [
176
+ -1.0,
177
+ -1.0,
178
+ -1.0,
179
+ 0.0,
180
+ 0.0,
181
+ -0.375,
182
+ 0.0
183
+ ],
184
+ "q01": [
185
+ -1.0,
186
+ -0.9828571677207947,
187
+ -0.6000000238418579,
188
+ 0.0,
189
+ 0.0,
190
+ -0.17249999940395355,
191
+ 0.0
192
+ ],
193
+ "q99": [
194
+ 1.0,
195
+ 0.9457142949104309,
196
+ 1.0,
197
+ 0.0,
198
+ 0.0,
199
+ 0.17892856895923615,
200
+ 1.0
201
+ ],
202
+ "std": [
203
+ 0.46348899602890015,
204
+ 0.41240179538726807,
205
+ 0.411862850189209,
206
+ 0.0,
207
+ 0.0,
208
+ 0.0578610822558403,
209
+ 0.49894046783447266
210
+ ]
211
+ },
212
+ "num_trajectories": 240,
213
+ "num_transitions": 353094,
214
+ "proprio": {
215
+ "max": [
216
+ 0.0,
217
+ 0.0,
218
+ 0.0,
219
+ 0.0,
220
+ 0.0,
221
+ 0.0,
222
+ 0.0
223
+ ],
224
+ "mean": [
225
+ 0.0,
226
+ 0.0,
227
+ 0.0,
228
+ 0.0,
229
+ 0.0,
230
+ 0.0,
231
+ 0.0
232
+ ],
233
+ "min": [
234
+ 0.0,
235
+ 0.0,
236
+ 0.0,
237
+ 0.0,
238
+ 0.0,
239
+ 0.0,
240
+ 0.0
241
+ ],
242
+ "q01": [
243
+ 0.0,
244
+ 0.0,
245
+ 0.0,
246
+ 0.0,
247
+ 0.0,
248
+ 0.0,
249
+ 0.0
250
+ ],
251
+ "q99": [
252
+ 0.0,
253
+ 0.0,
254
+ 0.0,
255
+ 0.0,
256
+ 0.0,
257
+ 0.0,
258
+ 0.0
259
+ ],
260
+ "std": [
261
+ 0.0,
262
+ 0.0,
263
+ 0.0,
264
+ 0.0,
265
+ 0.0,
266
+ 0.0,
267
+ 0.0
268
+ ]
269
+ }
270
+ },
271
+ "austin_sirius_dataset_converted_externally_to_rlds": {
272
+ "action": {
273
+ "mask": [
274
+ true,
275
+ true,
276
+ true,
277
+ true,
278
+ true,
279
+ true,
280
+ false
281
+ ],
282
+ "max": [
283
+ 1.0002285242080688,
284
+ 0.960608720779419,
285
+ 1.105179786682129,
286
+ 0.0,
287
+ 0.0,
288
+ 0.341785728931427,
289
+ 1.0
290
+ ],
291
+ "mean": [
292
+ 0.07747682929039001,
293
+ 0.03195561468601227,
294
+ 0.04244732856750488,
295
+ 0.0,
296
+ 0.0,
297
+ -0.01603456400334835,
298
+ 0.43260177969932556
299
+ ],
300
+ "min": [
301
+ -1.0183025598526,
302
+ -0.9800000190734863,
303
+ -0.9774575233459473,
304
+ 0.0,
305
+ 0.0,
306
+ -0.34607142210006714,
307
+ 0.0
308
+ ],
309
+ "q01": [
310
+ -0.780905865430832,
311
+ -0.5667179036140442,
312
+ -0.5254343223571777,
313
+ 0.0,
314
+ 0.0,
315
+ -0.28495091378688814,
316
+ 0.0
317
+ ],
318
+ "q99": [
319
+ 0.9569637751579284,
320
+ 0.6971374487876891,
321
+ 0.8124888157844541,
322
+ 0.0,
323
+ 0.0,
324
+ 0.1971428543329239,
325
+ 1.0
326
+ ],
327
+ "std": [
328
+ 0.3906329572200775,
329
+ 0.2998155355453491,
330
+ 0.2782271206378937,
331
+ 0.0,
332
+ 0.0,
333
+ 0.08120622485876083,
334
+ 0.49528297781944275
335
+ ]
336
+ },
337
+ "num_trajectories": 559,
338
+ "num_transitions": 279939,
339
+ "proprio": {
340
+ "max": [
341
+ 0.0,
342
+ 0.0,
343
+ 0.0,
344
+ 0.0,
345
+ 0.0,
346
+ 0.0,
347
+ 0.0
348
+ ],
349
+ "mean": [
350
+ 0.0,
351
+ 0.0,
352
+ 0.0,
353
+ 0.0,
354
+ 0.0,
355
+ 0.0,
356
+ 0.0
357
+ ],
358
+ "min": [
359
+ 0.0,
360
+ 0.0,
361
+ 0.0,
362
+ 0.0,
363
+ 0.0,
364
+ 0.0,
365
+ 0.0
366
+ ],
367
+ "q01": [
368
+ 0.0,
369
+ 0.0,
370
+ 0.0,
371
+ 0.0,
372
+ 0.0,
373
+ 0.0,
374
+ 0.0
375
+ ],
376
+ "q99": [
377
+ 0.0,
378
+ 0.0,
379
+ 0.0,
380
+ 0.0,
381
+ 0.0,
382
+ 0.0,
383
+ 0.0
384
+ ],
385
+ "std": [
386
+ 0.0,
387
+ 0.0,
388
+ 0.0,
389
+ 0.0,
390
+ 0.0,
391
+ 0.0,
392
+ 0.0
393
+ ]
394
+ }
395
+ },
396
+ "bc_z": {
397
+ "action": {
398
+ "mask": [
399
+ true,
400
+ true,
401
+ true,
402
+ true,
403
+ true,
404
+ true,
405
+ false
406
+ ],
407
+ "max": [
408
+ 0.2165454924106598,
409
+ 0.1251407265663147,
410
+ 0.10772687941789627,
411
+ 0.33544227480888367,
412
+ 0.28117990493774414,
413
+ 0.40614867210388184,
414
+ 1.0
415
+ ],
416
+ "mean": [
417
+ -0.009958467446267605,
418
+ 0.0008958321413956583,
419
+ 0.004995597992092371,
420
+ 0.00029755113064311445,
421
+ -0.008735382929444313,
422
+ -0.030693737789988518,
423
+ 0.8344562649726868
424
+ ],
425
+ "min": [
426
+ -0.1677047461271286,
427
+ -0.14630407094955444,
428
+ -0.10066790133714676,
429
+ -0.29421567916870117,
430
+ -0.32101404666900635,
431
+ -0.4635624885559082,
432
+ 0.0
433
+ ],
434
+ "q01": [
435
+ -0.09220654994249344,
436
+ -0.06456145539879798,
437
+ -0.049121275544166565,
438
+ -0.11594625547528267,
439
+ -0.14152548640966414,
440
+ -0.2251061636209488,
441
+ 0.0
442
+ ],
443
+ "q99": [
444
+ 0.07628866866230968,
445
+ 0.058019736707210584,
446
+ 0.052540797740221024,
447
+ 0.11740604028105736,
448
+ 0.11703975558280955,
449
+ 0.16729306846857078,
450
+ 1.0
451
+ ],
452
+ "std": [
453
+ 0.03053455986082554,
454
+ 0.0231423731893301,
455
+ 0.020641816779971123,
456
+ 0.04155943542718887,
457
+ 0.046427831053733826,
458
+ 0.0769818127155304,
459
+ 0.3610210120677948
460
+ ]
461
+ },
462
+ "num_trajectories": 43264,
463
+ "num_transitions": 6015535,
464
+ "proprio": {
465
+ "max": [
466
+ 0.0,
467
+ 0.0,
468
+ 0.0,
469
+ 0.0,
470
+ 0.0,
471
+ 0.0,
472
+ 0.0
473
+ ],
474
+ "mean": [
475
+ 0.0,
476
+ 0.0,
477
+ 0.0,
478
+ 0.0,
479
+ 0.0,
480
+ 0.0,
481
+ 0.0
482
+ ],
483
+ "min": [
484
+ 0.0,
485
+ 0.0,
486
+ 0.0,
487
+ 0.0,
488
+ 0.0,
489
+ 0.0,
490
+ 0.0
491
+ ],
492
+ "q01": [
493
+ 0.0,
494
+ 0.0,
495
+ 0.0,
496
+ 0.0,
497
+ 0.0,
498
+ 0.0,
499
+ 0.0
500
+ ],
501
+ "q99": [
502
+ 0.0,
503
+ 0.0,
504
+ 0.0,
505
+ 0.0,
506
+ 0.0,
507
+ 0.0,
508
+ 0.0
509
+ ],
510
+ "std": [
511
+ 0.0,
512
+ 0.0,
513
+ 0.0,
514
+ 0.0,
515
+ 0.0,
516
+ 0.0,
517
+ 0.0
518
+ ]
519
+ }
520
+ },
521
+ "berkeley_autolab_ur5": {
522
+ "action": {
523
+ "mask": [
524
+ true,
525
+ true,
526
+ true,
527
+ true,
528
+ true,
529
+ true,
530
+ false
531
+ ],
532
+ "max": [
533
+ 0.019999999552965164,
534
+ 0.019999999552965164,
535
+ 0.019999999552965164,
536
+ 0.06666667014360428,
537
+ 0.06666667014360428,
538
+ 0.06666667014360428,
539
+ 1.0
540
+ ],
541
+ "mean": [
542
+ 0.0005683620693162084,
543
+ 0.001217700308188796,
544
+ -0.0005296372692100704,
545
+ 0.00021029810886830091,
546
+ 6.0695128922816366e-05,
547
+ 0.001204986940138042,
548
+ 0.6298308372497559
549
+ ],
550
+ "min": [
551
+ -0.019999999552965164,
552
+ -0.019999999552965164,
553
+ -0.019999999552965164,
554
+ -0.06666667014360428,
555
+ -0.06666667014360428,
556
+ -0.06666667014360428,
557
+ 0.0
558
+ ],
559
+ "q01": [
560
+ -0.019999999552965164,
561
+ -0.019999999552965164,
562
+ -0.019999999552965164,
563
+ -0.02628571353852749,
564
+ -0.06666667014360428,
565
+ -0.03847619146108627,
566
+ 0.0
567
+ ],
568
+ "q99": [
569
+ 0.019999999552965164,
570
+ 0.019999999552965164,
571
+ 0.019999999552965164,
572
+ 0.031809523701667786,
573
+ 0.06666667014360428,
574
+ 0.036571428179740906,
575
+ 1.0
576
+ ],
577
+ "std": [
578
+ 0.0115329809486866,
579
+ 0.007990492507815361,
580
+ 0.009577835910022259,
581
+ 0.009432995691895485,
582
+ 0.016427582129836082,
583
+ 0.011053967289626598,
584
+ 0.48267969489097595
585
+ ]
586
+ },
587
+ "num_trajectories": 1000,
588
+ "num_transitions": 97939,
589
+ "proprio": {
590
+ "max": [
591
+ 0.0,
592
+ 0.0,
593
+ 0.0,
594
+ 0.0,
595
+ 0.0,
596
+ 0.0,
597
+ 0.0
598
+ ],
599
+ "mean": [
600
+ 0.0,
601
+ 0.0,
602
+ 0.0,
603
+ 0.0,
604
+ 0.0,
605
+ 0.0,
606
+ 0.0
607
+ ],
608
+ "min": [
609
+ 0.0,
610
+ 0.0,
611
+ 0.0,
612
+ 0.0,
613
+ 0.0,
614
+ 0.0,
615
+ 0.0
616
+ ],
617
+ "q01": [
618
+ 0.0,
619
+ 0.0,
620
+ 0.0,
621
+ 0.0,
622
+ 0.0,
623
+ 0.0,
624
+ 0.0
625
+ ],
626
+ "q99": [
627
+ 0.0,
628
+ 0.0,
629
+ 0.0,
630
+ 0.0,
631
+ 0.0,
632
+ 0.0,
633
+ 0.0
634
+ ],
635
+ "std": [
636
+ 0.0,
637
+ 0.0,
638
+ 0.0,
639
+ 0.0,
640
+ 0.0,
641
+ 0.0,
642
+ 0.0
643
+ ]
644
+ }
645
+ },
646
+ "berkeley_cable_routing": {
647
+ "action": {
648
+ "mask": [
649
+ true,
650
+ true,
651
+ true,
652
+ true,
653
+ true,
654
+ true,
655
+ false
656
+ ],
657
+ "max": [
658
+ 0.9633283019065857,
659
+ 1.0,
660
+ 1.0,
661
+ 0.0,
662
+ 0.0,
663
+ 1.0,
664
+ 0.0
665
+ ],
666
+ "mean": [
667
+ -0.07139874249696732,
668
+ 0.023609008640050888,
669
+ 0.10241943597793579,
670
+ 0.0,
671
+ 0.0,
672
+ 0.049671024084091187,
673
+ 0.0
674
+ ],
675
+ "min": [
676
+ -0.9809081554412842,
677
+ -0.9554349184036255,
678
+ -0.9994775056838989,
679
+ 0.0,
680
+ 0.0,
681
+ -1.0,
682
+ 0.0
683
+ ],
684
+ "q01": [
685
+ -0.5534318816661835,
686
+ -0.4797285574674606,
687
+ -0.5314934802055359,
688
+ 0.0,
689
+ 0.0,
690
+ -0.8855219376087189,
691
+ 0.0
692
+ ],
693
+ "q99": [
694
+ 0.42652835428714786,
695
+ 0.5000944086909298,
696
+ 0.639823433756829,
697
+ 0.0,
698
+ 0.0,
699
+ 0.984243879914284,
700
+ 0.0
701
+ ],
702
+ "std": [
703
+ 0.1815500408411026,
704
+ 0.1810990273952484,
705
+ 0.21220779418945312,
706
+ 0.0,
707
+ 0.0,
708
+ 0.3475511968135834,
709
+ 0.0
710
+ ]
711
+ },
712
+ "num_trajectories": 1647,
713
+ "num_transitions": 42328,
714
+ "proprio": {
715
+ "max": [
716
+ 0.0,
717
+ 0.0,
718
+ 0.0,
719
+ 0.0,
720
+ 0.0,
721
+ 0.0,
722
+ 0.0
723
+ ],
724
+ "mean": [
725
+ 0.0,
726
+ 0.0,
727
+ 0.0,
728
+ 0.0,
729
+ 0.0,
730
+ 0.0,
731
+ 0.0
732
+ ],
733
+ "min": [
734
+ 0.0,
735
+ 0.0,
736
+ 0.0,
737
+ 0.0,
738
+ 0.0,
739
+ 0.0,
740
+ 0.0
741
+ ],
742
+ "q01": [
743
+ 0.0,
744
+ 0.0,
745
+ 0.0,
746
+ 0.0,
747
+ 0.0,
748
+ 0.0,
749
+ 0.0
750
+ ],
751
+ "q99": [
752
+ 0.0,
753
+ 0.0,
754
+ 0.0,
755
+ 0.0,
756
+ 0.0,
757
+ 0.0,
758
+ 0.0
759
+ ],
760
+ "std": [
761
+ 0.0,
762
+ 0.0,
763
+ 0.0,
764
+ 0.0,
765
+ 0.0,
766
+ 0.0,
767
+ 0.0
768
+ ]
769
+ }
770
+ },
771
+ "berkeley_fanuc_manipulation": {
772
+ "action": {
773
+ "mask": [
774
+ true,
775
+ true,
776
+ true,
777
+ true,
778
+ true,
779
+ true,
780
+ false
781
+ ],
782
+ "max": [
783
+ 0.009999999776482582,
784
+ 0.009999999776482582,
785
+ 0.009999999776482582,
786
+ 0.03490658476948738,
787
+ 0.03490658476948738,
788
+ 0.03490658476948738,
789
+ 1.0
790
+ ],
791
+ "mean": [
792
+ 0.0007744057802483439,
793
+ -0.00031240080716088414,
794
+ -0.0015001941937953234,
795
+ -0.0007515158504247665,
796
+ -0.00015832878125365824,
797
+ 0.00014327642566058785,
798
+ 0.699295699596405
799
+ ],
800
+ "min": [
801
+ -0.009999999776482582,
802
+ -0.009999999776482582,
803
+ -0.009999999776482582,
804
+ -0.03490658476948738,
805
+ -0.03490658476948738,
806
+ -0.03490658476948738,
807
+ 0.0
808
+ ],
809
+ "q01": [
810
+ -0.009999999776482582,
811
+ -0.009999999776482582,
812
+ -0.009999999776482582,
813
+ -0.03490658476948738,
814
+ 0.0,
815
+ -0.03490658476948738,
816
+ 0.0
817
+ ],
818
+ "q99": [
819
+ 0.009999999776482582,
820
+ 0.009999999776482582,
821
+ 0.009999999776482582,
822
+ 0.03490658476948738,
823
+ 0.0,
824
+ 0.03490658476948738,
825
+ 1.0
826
+ ],
827
+ "std": [
828
+ 0.0034070091787725687,
829
+ 0.0049921851605176926,
830
+ 0.005344334989786148,
831
+ 0.00759894959628582,
832
+ 0.004081866703927517,
833
+ 0.008568956516683102,
834
+ 0.4586937427520752
835
+ ]
836
+ },
837
+ "num_trajectories": 415,
838
+ "num_transitions": 62613,
839
+ "proprio": {
840
+ "max": [
841
+ 0.0,
842
+ 0.0,
843
+ 0.0,
844
+ 0.0,
845
+ 0.0,
846
+ 0.0,
847
+ 0.0
848
+ ],
849
+ "mean": [
850
+ 0.0,
851
+ 0.0,
852
+ 0.0,
853
+ 0.0,
854
+ 0.0,
855
+ 0.0,
856
+ 0.0
857
+ ],
858
+ "min": [
859
+ 0.0,
860
+ 0.0,
861
+ 0.0,
862
+ 0.0,
863
+ 0.0,
864
+ 0.0,
865
+ 0.0
866
+ ],
867
+ "q01": [
868
+ 0.0,
869
+ 0.0,
870
+ 0.0,
871
+ 0.0,
872
+ 0.0,
873
+ 0.0,
874
+ 0.0
875
+ ],
876
+ "q99": [
877
+ 0.0,
878
+ 0.0,
879
+ 0.0,
880
+ 0.0,
881
+ 0.0,
882
+ 0.0,
883
+ 0.0
884
+ ],
885
+ "std": [
886
+ 0.0,
887
+ 0.0,
888
+ 0.0,
889
+ 0.0,
890
+ 0.0,
891
+ 0.0,
892
+ 0.0
893
+ ]
894
+ }
895
+ },
896
+ "bridge_orig": {
897
+ "action": {
898
+ "mask": [
899
+ true,
900
+ true,
901
+ true,
902
+ true,
903
+ true,
904
+ true,
905
+ false
906
+ ],
907
+ "max": [
908
+ 0.41691166162490845,
909
+ 0.25864794850349426,
910
+ 0.21218234300613403,
911
+ 3.122201919555664,
912
+ 1.8618112802505493,
913
+ 6.280478477478027,
914
+ 1.0
915
+ ],
916
+ "mean": [
917
+ 0.0002334194869035855,
918
+ 0.00013004911306779832,
919
+ -0.00012762474943883717,
920
+ -0.0001556558854645118,
921
+ -0.0004039328487124294,
922
+ 0.00023557482927571982,
923
+ 0.5764579176902771
924
+ ],
925
+ "min": [
926
+ -0.4007510244846344,
927
+ -0.13874775171279907,
928
+ -0.22553899884223938,
929
+ -3.2010786533355713,
930
+ -1.8618112802505493,
931
+ -6.279075622558594,
932
+ 0.0
933
+ ],
934
+ "q01": [
935
+ -0.02872725307941437,
936
+ -0.04170349963009357,
937
+ -0.026093858778476715,
938
+ -0.08092105075716972,
939
+ -0.09288699507713317,
940
+ -0.20718276381492615,
941
+ 0.0
942
+ ],
943
+ "q99": [
944
+ 0.028309678435325586,
945
+ 0.040855254605412394,
946
+ 0.040161586627364146,
947
+ 0.08192047759890528,
948
+ 0.07792850524187081,
949
+ 0.20382574498653397,
950
+ 1.0
951
+ ],
952
+ "std": [
953
+ 0.009765930473804474,
954
+ 0.013689135201275349,
955
+ 0.012667362578213215,
956
+ 0.028534092009067535,
957
+ 0.030637972056865692,
958
+ 0.07691419124603271,
959
+ 0.4973701536655426
960
+ ]
961
+ },
962
+ "num_trajectories": 60064,
963
+ "num_transitions": 2135463,
964
+ "proprio": {
965
+ "max": [
966
+ 0.0,
967
+ 0.0,
968
+ 0.0,
969
+ 0.0,
970
+ 0.0,
971
+ 0.0,
972
+ 0.0
973
+ ],
974
+ "mean": [
975
+ 0.0,
976
+ 0.0,
977
+ 0.0,
978
+ 0.0,
979
+ 0.0,
980
+ 0.0,
981
+ 0.0
982
+ ],
983
+ "min": [
984
+ 0.0,
985
+ 0.0,
986
+ 0.0,
987
+ 0.0,
988
+ 0.0,
989
+ 0.0,
990
+ 0.0
991
+ ],
992
+ "q01": [
993
+ 0.0,
994
+ 0.0,
995
+ 0.0,
996
+ 0.0,
997
+ 0.0,
998
+ 0.0,
999
+ 0.0
1000
+ ],
1001
+ "q99": [
1002
+ 0.0,
1003
+ 0.0,
1004
+ 0.0,
1005
+ 0.0,
1006
+ 0.0,
1007
+ 0.0,
1008
+ 0.0
1009
+ ],
1010
+ "std": [
1011
+ 0.0,
1012
+ 0.0,
1013
+ 0.0,
1014
+ 0.0,
1015
+ 0.0,
1016
+ 0.0,
1017
+ 0.0
1018
+ ]
1019
+ }
1020
+ },
1021
+ "Simpler":{
1022
+ "action": {
1023
+ "mask": [
1024
+ true,
1025
+ true,
1026
+ true,
1027
+ true,
1028
+ true,
1029
+ true,
1030
+ false
1031
+ ],
1032
+ "mean": [0.0005180677981115878, 0.0017013342585414648, -0.002396165858954191, 0.0020181615836918354, -0.0021385529544204473, 0.0027280307840555906, 0.5512820482254028],
1033
+ "std": [0.008279944770038128, 0.010560504160821438, 0.011048485524952412, 0.019083814695477486, 0.023065006360411644, 0.05057094246149063, 0.49736595153808594],
1034
+ "max": [0.028767907992005348, 0.03938673436641693, 0.0413004532456398, 0.07726797461509705, 0.07288125157356262, 0.30027416348457336, 1.0], "min": [-0.028463074937462807, -0.03928287699818611, -0.02900974079966545, -0.07467558979988098, -0.08569652587175369, -0.2545502781867981, 0.0],
1035
+ "q01": [-0.026224996894598007, -0.02451014146208763, -0.018891602754592896, -0.04868743568658829, -0.06938208639621735, -0.16456687450408936, 0.0],
1036
+ "q99": [0.023646870627999306, 0.028327181935310364, 0.02669953554868698, 0.049720048904418945, 0.04017284885048866, 0.17513641715049744, 1.0]},
1037
+ "proprio": {
1038
+ "mean": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
1039
+ "std": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
1040
+ "max": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
1041
+ "min": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
1042
+ "q01": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
1043
+ "q99": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]},
1044
+ "num_transitions": 2808,
1045
+ "num_trajectories": 100
1046
+ },
1047
+ "cmu_stretch": {
1048
+ "action": {
1049
+ "mask": [
1050
+ true,
1051
+ true,
1052
+ true,
1053
+ true,
1054
+ true,
1055
+ true,
1056
+ false
1057
+ ],
1058
+ "max": [
1059
+ 0.02338407188653946,
1060
+ 0.0,
1061
+ 0.023404927924275398,
1062
+ 0.0,
1063
+ 0.0,
1064
+ 0.0,
1065
+ 1.0
1066
+ ],
1067
+ "mean": [
1068
+ 0.00036304505192674696,
1069
+ 0.0,
1070
+ 0.0016466958913952112,
1071
+ 0.0,
1072
+ 0.0,
1073
+ 0.0,
1074
+ 0.3987048268318176
1075
+ ],
1076
+ "min": [
1077
+ -0.019353797659277916,
1078
+ 0.0,
1079
+ -0.02019215188920498,
1080
+ 0.0,
1081
+ 0.0,
1082
+ 0.0,
1083
+ 0.0
1084
+ ],
1085
+ "q01": [
1086
+ -0.011175686959177256,
1087
+ 0.0,
1088
+ -0.0032206363626755773,
1089
+ 0.0,
1090
+ 0.0,
1091
+ 0.0,
1092
+ 0.0
1093
+ ],
1094
+ "q99": [
1095
+ 0.014501785952597848,
1096
+ 0.0,
1097
+ 0.015056106168776728,
1098
+ 0.0,
1099
+ 0.0,
1100
+ 0.0,
1101
+ 1.0
1102
+ ],
1103
+ "std": [
1104
+ 0.004081828519701958,
1105
+ 0.0,
1106
+ 0.0037743328139185905,
1107
+ 0.0,
1108
+ 0.0,
1109
+ 0.0,
1110
+ 0.48963725566864014
1111
+ ]
1112
+ },
1113
+ "num_trajectories": 135,
1114
+ "num_transitions": 25016,
1115
+ "proprio": {
1116
+ "max": [
1117
+ 0.0,
1118
+ 0.0,
1119
+ 0.0,
1120
+ 0.0,
1121
+ 0.0,
1122
+ 0.0,
1123
+ 0.0
1124
+ ],
1125
+ "mean": [
1126
+ 0.0,
1127
+ 0.0,
1128
+ 0.0,
1129
+ 0.0,
1130
+ 0.0,
1131
+ 0.0,
1132
+ 0.0
1133
+ ],
1134
+ "min": [
1135
+ 0.0,
1136
+ 0.0,
1137
+ 0.0,
1138
+ 0.0,
1139
+ 0.0,
1140
+ 0.0,
1141
+ 0.0
1142
+ ],
1143
+ "q01": [
1144
+ 0.0,
1145
+ 0.0,
1146
+ 0.0,
1147
+ 0.0,
1148
+ 0.0,
1149
+ 0.0,
1150
+ 0.0
1151
+ ],
1152
+ "q99": [
1153
+ 0.0,
1154
+ 0.0,
1155
+ 0.0,
1156
+ 0.0,
1157
+ 0.0,
1158
+ 0.0,
1159
+ 0.0
1160
+ ],
1161
+ "std": [
1162
+ 0.0,
1163
+ 0.0,
1164
+ 0.0,
1165
+ 0.0,
1166
+ 0.0,
1167
+ 0.0,
1168
+ 0.0
1169
+ ]
1170
+ }
1171
+ },
1172
+ "dlr_edan_shared_control_converted_externally_to_rlds": {
1173
+ "action": {
1174
+ "mask": [
1175
+ true,
1176
+ true,
1177
+ true,
1178
+ true,
1179
+ true,
1180
+ true,
1181
+ false
1182
+ ],
1183
+ "max": [
1184
+ 0.18991442024707794,
1185
+ 0.0739002525806427,
1186
+ 0.18064819276332855,
1187
+ 0.0866486132144928,
1188
+ 0.13464981317520142,
1189
+ 0.16910280287265778,
1190
+ 1.0
1191
+ ],
1192
+ "mean": [
1193
+ 0.006647810339927673,
1194
+ -0.0007657372043468058,
1195
+ 0.006522852927446365,
1196
+ 0.0011679717572405934,
1197
+ -0.006395625416189432,
1198
+ -0.011902998201549053,
1199
+ 0.6985887289047241
1200
+ ],
1201
+ "min": [
1202
+ -0.10054297000169754,
1203
+ -0.08427435159683228,
1204
+ -0.13533438742160797,
1205
+ -0.17556548118591309,
1206
+ -0.18485672771930695,
1207
+ -0.2680685818195343,
1208
+ 0.0
1209
+ ],
1210
+ "q01": [
1211
+ -0.02987122368067503,
1212
+ -0.06013262912631035,
1213
+ -0.08286409199237824,
1214
+ -0.05924444157630205,
1215
+ -0.15986866518855095,
1216
+ -0.15636983573436739,
1217
+ 0.0
1218
+ ],
1219
+ "q99": [
1220
+ 0.08832092039287087,
1221
+ 0.042126184627413736,
1222
+ 0.11311905644834042,
1223
+ 0.0643695573508739,
1224
+ 0.03941855944693088,
1225
+ 0.156646853685379,
1226
+ 1.0
1227
+ ],
1228
+ "std": [
1229
+ 0.021393608301877975,
1230
+ 0.01814231649041176,
1231
+ 0.03374375030398369,
1232
+ 0.01743541844189167,
1233
+ 0.03394376486539841,
1234
+ 0.04641875624656677,
1235
+ 0.4588589072227478
1236
+ ]
1237
+ },
1238
+ "num_trajectories": 104,
1239
+ "num_transitions": 8928,
1240
+ "proprio": {
1241
+ "max": [
1242
+ 0.0,
1243
+ 0.0,
1244
+ 0.0,
1245
+ 0.0,
1246
+ 0.0,
1247
+ 0.0,
1248
+ 0.0
1249
+ ],
1250
+ "mean": [
1251
+ 0.0,
1252
+ 0.0,
1253
+ 0.0,
1254
+ 0.0,
1255
+ 0.0,
1256
+ 0.0,
1257
+ 0.0
1258
+ ],
1259
+ "min": [
1260
+ 0.0,
1261
+ 0.0,
1262
+ 0.0,
1263
+ 0.0,
1264
+ 0.0,
1265
+ 0.0,
1266
+ 0.0
1267
+ ],
1268
+ "q01": [
1269
+ 0.0,
1270
+ 0.0,
1271
+ 0.0,
1272
+ 0.0,
1273
+ 0.0,
1274
+ 0.0,
1275
+ 0.0
1276
+ ],
1277
+ "q99": [
1278
+ 0.0,
1279
+ 0.0,
1280
+ 0.0,
1281
+ 0.0,
1282
+ 0.0,
1283
+ 0.0,
1284
+ 0.0
1285
+ ],
1286
+ "std": [
1287
+ 0.0,
1288
+ 0.0,
1289
+ 0.0,
1290
+ 0.0,
1291
+ 0.0,
1292
+ 0.0,
1293
+ 0.0
1294
+ ]
1295
+ }
1296
+ },
1297
+ "dobbe": {
1298
+ "action": {
1299
+ "mask": [
1300
+ true,
1301
+ true,
1302
+ true,
1303
+ true,
1304
+ true,
1305
+ true,
1306
+ false
1307
+ ],
1308
+ "max": [
1309
+ 38.590423583984375,
1310
+ 17.932697296142578,
1311
+ 4.843764305114746,
1312
+ 1.4372116327285767,
1313
+ 0.4340403974056244,
1314
+ 1.2057193517684937,
1315
+ 0.9998947381973267
1316
+ ],
1317
+ "mean": [
1318
+ -0.0001120665911003016,
1319
+ 0.0011229600058868527,
1320
+ -0.00010194431524723768,
1321
+ -7.371398532995954e-05,
1322
+ -0.00067531579406932,
1323
+ -5.6643435527803376e-05,
1324
+ 0.6318281888961792
1325
+ ],
1326
+ "min": [
1327
+ -5.700923442840576,
1328
+ -21.605947494506836,
1329
+ -123.72489929199219,
1330
+ -1.7229845523834229,
1331
+ -0.4998578727245331,
1332
+ -0.8867913484573364,
1333
+ 1.4196479014572105e-06
1334
+ ],
1335
+ "q01": [
1336
+ -0.01119564864784479,
1337
+ -0.014266146533191203,
1338
+ -0.0071747214533388615,
1339
+ -0.009444301575422287,
1340
+ -0.03990109823644161,
1341
+ -0.017422311007976532,
1342
+ 4.003279136668425e-05
1343
+ ],
1344
+ "q99": [
1345
+ 0.01015154086053368,
1346
+ 0.017181577533483497,
1347
+ 0.007216989761218411,
1348
+ 0.010380979906767595,
1349
+ 0.03556173853576176,
1350
+ 0.018032474815845446,
1351
+ 0.9982578039169312
1352
+ ],
1353
+ "std": [
1354
+ 0.04264938458800316,
1355
+ 0.04428559169173241,
1356
+ 0.12224084138870239,
1357
+ 0.005388413090258837,
1358
+ 0.011246449314057827,
1359
+ 0.006287882570177317,
1360
+ 0.39732322096824646
1361
+ ]
1362
+ },
1363
+ "num_trajectories": 5208,
1364
+ "num_transitions": 1139911,
1365
+ "proprio": {
1366
+ "max": [
1367
+ 0.0,
1368
+ 0.0,
1369
+ 0.0,
1370
+ 0.0,
1371
+ 0.0,
1372
+ 0.0,
1373
+ 0.0
1374
+ ],
1375
+ "mean": [
1376
+ 0.0,
1377
+ 0.0,
1378
+ 0.0,
1379
+ 0.0,
1380
+ 0.0,
1381
+ 0.0,
1382
+ 0.0
1383
+ ],
1384
+ "min": [
1385
+ 0.0,
1386
+ 0.0,
1387
+ 0.0,
1388
+ 0.0,
1389
+ 0.0,
1390
+ 0.0,
1391
+ 0.0
1392
+ ],
1393
+ "q01": [
1394
+ 0.0,
1395
+ 0.0,
1396
+ 0.0,
1397
+ 0.0,
1398
+ 0.0,
1399
+ 0.0,
1400
+ 0.0
1401
+ ],
1402
+ "q99": [
1403
+ 0.0,
1404
+ 0.0,
1405
+ 0.0,
1406
+ 0.0,
1407
+ 0.0,
1408
+ 0.0,
1409
+ 0.0
1410
+ ],
1411
+ "std": [
1412
+ 0.0,
1413
+ 0.0,
1414
+ 0.0,
1415
+ 0.0,
1416
+ 0.0,
1417
+ 0.0,
1418
+ 0.0
1419
+ ]
1420
+ }
1421
+ },
1422
+ "fmb_dataset": {
1423
+ "action": {
1424
+ "mask": [
1425
+ true,
1426
+ true,
1427
+ true,
1428
+ true,
1429
+ true,
1430
+ true,
1431
+ false
1432
+ ],
1433
+ "max": [
1434
+ 1.399999976158142,
1435
+ 1.0,
1436
+ 1.399999976158142,
1437
+ 1.0,
1438
+ 1.0,
1439
+ 1.0,
1440
+ 1.0
1441
+ ],
1442
+ "mean": [
1443
+ 0.059029702097177505,
1444
+ -0.06476633995771408,
1445
+ -0.09787475317716599,
1446
+ 0.004325388930737972,
1447
+ 0.00028963794466108084,
1448
+ -0.04457257315516472,
1449
+ 0.7336440086364746
1450
+ ],
1451
+ "min": [
1452
+ -1.399999976158142,
1453
+ -1.399999976158142,
1454
+ -1.0,
1455
+ -1.0,
1456
+ -1.0,
1457
+ -1.0,
1458
+ 0.0
1459
+ ],
1460
+ "q01": [
1461
+ -0.8257142901420593,
1462
+ -1.399999976158142,
1463
+ -1.0,
1464
+ -1.0,
1465
+ -0.3028571307659149,
1466
+ -1.0,
1467
+ 0.0
1468
+ ],
1469
+ "q99": [
1470
+ 1.0,
1471
+ 0.5257142782211304,
1472
+ 1.0,
1473
+ 1.0,
1474
+ 0.3400000035762787,
1475
+ 1.0,
1476
+ 1.0
1477
+ ],
1478
+ "std": [
1479
+ 0.28809213638305664,
1480
+ 0.2820415794849396,
1481
+ 0.4626740515232086,
1482
+ 0.3266514539718628,
1483
+ 0.10842999070882797,
1484
+ 0.3440099358558655,
1485
+ 0.4435282051563263
1486
+ ]
1487
+ },
1488
+ "num_trajectories": 8612,
1489
+ "num_transitions": 1137459,
1490
+ "proprio": {
1491
+ "max": [
1492
+ 0.0,
1493
+ 0.0,
1494
+ 0.0,
1495
+ 0.0,
1496
+ 0.0,
1497
+ 0.0,
1498
+ 0.0
1499
+ ],
1500
+ "mean": [
1501
+ 0.0,
1502
+ 0.0,
1503
+ 0.0,
1504
+ 0.0,
1505
+ 0.0,
1506
+ 0.0,
1507
+ 0.0
1508
+ ],
1509
+ "min": [
1510
+ 0.0,
1511
+ 0.0,
1512
+ 0.0,
1513
+ 0.0,
1514
+ 0.0,
1515
+ 0.0,
1516
+ 0.0
1517
+ ],
1518
+ "q01": [
1519
+ 0.0,
1520
+ 0.0,
1521
+ 0.0,
1522
+ 0.0,
1523
+ 0.0,
1524
+ 0.0,
1525
+ 0.0
1526
+ ],
1527
+ "q99": [
1528
+ 0.0,
1529
+ 0.0,
1530
+ 0.0,
1531
+ 0.0,
1532
+ 0.0,
1533
+ 0.0,
1534
+ 0.0
1535
+ ],
1536
+ "std": [
1537
+ 0.0,
1538
+ 0.0,
1539
+ 0.0,
1540
+ 0.0,
1541
+ 0.0,
1542
+ 0.0,
1543
+ 0.0
1544
+ ]
1545
+ }
1546
+ },
1547
+ "fractal20220817_data": {
1548
+ "action": {
1549
+ "mask": [
1550
+ true,
1551
+ true,
1552
+ true,
1553
+ true,
1554
+ true,
1555
+ true,
1556
+ false
1557
+ ],
1558
+ "max": [
1559
+ 2.9984593391418457,
1560
+ 22.09052848815918,
1561
+ 2.7507524490356445,
1562
+ 1.570636510848999,
1563
+ 1.5321086645126343,
1564
+ 1.5691522359848022,
1565
+ 1.0
1566
+ ],
1567
+ "mean": [
1568
+ 0.006987582892179489,
1569
+ 0.006265917327255011,
1570
+ -0.01262515690177679,
1571
+ 0.04333311319351196,
1572
+ -0.005756212864071131,
1573
+ 0.0009130256366916001,
1574
+ 0.5354204773902893
1575
+ ],
1576
+ "min": [
1577
+ -2.0204520225524902,
1578
+ -5.497899532318115,
1579
+ -2.031663417816162,
1580
+ -1.569917917251587,
1581
+ -1.569892168045044,
1582
+ -1.570419430732727,
1583
+ 0.0
1584
+ ],
1585
+ "q01": [
1586
+ -0.22453527510166169,
1587
+ -0.14820013284683228,
1588
+ -0.231589707583189,
1589
+ -0.3517994859814644,
1590
+ -0.4193011274933815,
1591
+ -0.43643461108207704,
1592
+ 0.0
1593
+ ],
1594
+ "q99": [
1595
+ 0.17824687153100965,
1596
+ 0.14938379630446405,
1597
+ 0.21842354819178575,
1598
+ 0.5892666035890578,
1599
+ 0.35272657424211445,
1600
+ 0.44796681255102094,
1601
+ 1.0
1602
+ ],
1603
+ "std": [
1604
+ 0.0692116990685463,
1605
+ 0.05970962345600128,
1606
+ 0.07353084534406662,
1607
+ 0.15610496699810028,
1608
+ 0.13164450228214264,
1609
+ 0.14593800902366638,
1610
+ 0.497110515832901
1611
+ ]
1612
+ },
1613
+ "num_trajectories": 87212,
1614
+ "num_transitions": 3786400,
1615
+ "proprio": {
1616
+ "max": [
1617
+ 0.0,
1618
+ 0.0,
1619
+ 0.0,
1620
+ 0.0,
1621
+ 0.0,
1622
+ 0.0,
1623
+ 0.0
1624
+ ],
1625
+ "mean": [
1626
+ 0.0,
1627
+ 0.0,
1628
+ 0.0,
1629
+ 0.0,
1630
+ 0.0,
1631
+ 0.0,
1632
+ 0.0
1633
+ ],
1634
+ "min": [
1635
+ 0.0,
1636
+ 0.0,
1637
+ 0.0,
1638
+ 0.0,
1639
+ 0.0,
1640
+ 0.0,
1641
+ 0.0
1642
+ ],
1643
+ "q01": [
1644
+ 0.0,
1645
+ 0.0,
1646
+ 0.0,
1647
+ 0.0,
1648
+ 0.0,
1649
+ 0.0,
1650
+ 0.0
1651
+ ],
1652
+ "q99": [
1653
+ 0.0,
1654
+ 0.0,
1655
+ 0.0,
1656
+ 0.0,
1657
+ 0.0,
1658
+ 0.0,
1659
+ 0.0
1660
+ ],
1661
+ "std": [
1662
+ 0.0,
1663
+ 0.0,
1664
+ 0.0,
1665
+ 0.0,
1666
+ 0.0,
1667
+ 0.0,
1668
+ 0.0
1669
+ ]
1670
+ }
1671
+ },
1672
+ "furniture_bench_dataset_converted_externally_to_rlds": {
1673
+ "action": {
1674
+ "mask": [
1675
+ true,
1676
+ true,
1677
+ true,
1678
+ true,
1679
+ true,
1680
+ true,
1681
+ false
1682
+ ],
1683
+ "max": [
1684
+ 0.10000000149011612,
1685
+ 0.10000000149011612,
1686
+ 0.10000000149011612,
1687
+ 0.8651833534240723,
1688
+ 1.0909736156463623,
1689
+ 2.863185405731201,
1690
+ 1.0
1691
+ ],
1692
+ "mean": [
1693
+ 0.00014610752987209707,
1694
+ 0.0010830952087417245,
1695
+ 0.0006224989192560315,
1696
+ -0.003303206292912364,
1697
+ -0.0026880695950239897,
1698
+ 0.018242603167891502,
1699
+ 0.48854944109916687
1700
+ ],
1701
+ "min": [
1702
+ -0.10495579987764359,
1703
+ -0.10939455777406693,
1704
+ -0.10000000149011612,
1705
+ -0.971906840801239,
1706
+ -1.0475432872772217,
1707
+ -3.06000018119812,
1708
+ 0.0
1709
+ ],
1710
+ "q01": [
1711
+ -0.053988199681043625,
1712
+ -0.05049169331789017,
1713
+ -0.032499241530895236,
1714
+ -0.1953887003660202,
1715
+ -0.41674559473991396,
1716
+ -0.8886768388748169,
1717
+ 0.0
1718
+ ],
1719
+ "q99": [
1720
+ 0.05414841488003723,
1721
+ 0.04965164884924884,
1722
+ 0.060055799782276154,
1723
+ 0.18231668293476103,
1724
+ 0.39867786407470646,
1725
+ 0.8772023963928218,
1726
+ 1.0
1727
+ ],
1728
+ "std": [
1729
+ 0.01610708422958851,
1730
+ 0.014891477301716805,
1731
+ 0.014014219865202904,
1732
+ 0.058274295181035995,
1733
+ 0.11417088657617569,
1734
+ 0.33479776978492737,
1735
+ 0.49991825222969055
1736
+ ]
1737
+ },
1738
+ "num_trajectories": 5100,
1739
+ "num_transitions": 3948057,
1740
+ "proprio": {
1741
+ "max": [
1742
+ 0.0,
1743
+ 0.0,
1744
+ 0.0,
1745
+ 0.0,
1746
+ 0.0,
1747
+ 0.0,
1748
+ 0.0
1749
+ ],
1750
+ "mean": [
1751
+ 0.0,
1752
+ 0.0,
1753
+ 0.0,
1754
+ 0.0,
1755
+ 0.0,
1756
+ 0.0,
1757
+ 0.0
1758
+ ],
1759
+ "min": [
1760
+ 0.0,
1761
+ 0.0,
1762
+ 0.0,
1763
+ 0.0,
1764
+ 0.0,
1765
+ 0.0,
1766
+ 0.0
1767
+ ],
1768
+ "q01": [
1769
+ 0.0,
1770
+ 0.0,
1771
+ 0.0,
1772
+ 0.0,
1773
+ 0.0,
1774
+ 0.0,
1775
+ 0.0
1776
+ ],
1777
+ "q99": [
1778
+ 0.0,
1779
+ 0.0,
1780
+ 0.0,
1781
+ 0.0,
1782
+ 0.0,
1783
+ 0.0,
1784
+ 0.0
1785
+ ],
1786
+ "std": [
1787
+ 0.0,
1788
+ 0.0,
1789
+ 0.0,
1790
+ 0.0,
1791
+ 0.0,
1792
+ 0.0,
1793
+ 0.0
1794
+ ]
1795
+ }
1796
+ },
1797
+ "iamlab_cmu_pickup_insert_converted_externally_to_rlds": {
1798
+ "action": {
1799
+ "mask": [
1800
+ true,
1801
+ true,
1802
+ true,
1803
+ true,
1804
+ true,
1805
+ true,
1806
+ false
1807
+ ],
1808
+ "max": [
1809
+ 0.6634981632232666,
1810
+ 0.23428471386432648,
1811
+ 0.4308285415172577,
1812
+ 3.1415927410125732,
1813
+ 0.13647015392780304,
1814
+ 3.141592502593994,
1815
+ 1.0
1816
+ ],
1817
+ "mean": [
1818
+ 0.5274372696876526,
1819
+ 0.02858201041817665,
1820
+ 0.18712575733661652,
1821
+ 1.2339589595794678,
1822
+ 0.03226623684167862,
1823
+ -1.4199490547180176,
1824
+ 0.5550631880760193
1825
+ ],
1826
+ "min": [
1827
+ 0.3071657121181488,
1828
+ -0.29754969477653503,
1829
+ 0.06578229367733002,
1830
+ -3.1415927410125732,
1831
+ -0.04584203287959099,
1832
+ -3.141592502593994,
1833
+ 0.0
1834
+ ],
1835
+ "q01": [
1836
+ 0.3148897051811218,
1837
+ -0.20317550599575043,
1838
+ 0.06785467118024827,
1839
+ -3.140952730178833,
1840
+ -0.029743434861302376,
1841
+ -3.141091251373291,
1842
+ 0.0
1843
+ ],
1844
+ "q99": [
1845
+ 0.6472805738449097,
1846
+ 0.20846802592277527,
1847
+ 0.36855655312538155,
1848
+ 3.1409926891326903,
1849
+ 0.11424950212240226,
1850
+ 3.1410969257354737,
1851
+ 1.0
1852
+ ],
1853
+ "std": [
1854
+ 0.08108345419168472,
1855
+ 0.1116757020354271,
1856
+ 0.07747554779052734,
1857
+ 2.8737246990203857,
1858
+ 0.02774704433977604,
1859
+ 2.7678682804107666,
1860
+ 0.49695101380348206
1861
+ ]
1862
+ },
1863
+ "num_trajectories": 631,
1864
+ "num_transitions": 146241,
1865
+ "proprio": {
1866
+ "max": [
1867
+ 0.0,
1868
+ 0.0,
1869
+ 0.0,
1870
+ 0.0,
1871
+ 0.0,
1872
+ 0.0,
1873
+ 0.0
1874
+ ],
1875
+ "mean": [
1876
+ 0.0,
1877
+ 0.0,
1878
+ 0.0,
1879
+ 0.0,
1880
+ 0.0,
1881
+ 0.0,
1882
+ 0.0
1883
+ ],
1884
+ "min": [
1885
+ 0.0,
1886
+ 0.0,
1887
+ 0.0,
1888
+ 0.0,
1889
+ 0.0,
1890
+ 0.0,
1891
+ 0.0
1892
+ ],
1893
+ "q01": [
1894
+ 0.0,
1895
+ 0.0,
1896
+ 0.0,
1897
+ 0.0,
1898
+ 0.0,
1899
+ 0.0,
1900
+ 0.0
1901
+ ],
1902
+ "q99": [
1903
+ 0.0,
1904
+ 0.0,
1905
+ 0.0,
1906
+ 0.0,
1907
+ 0.0,
1908
+ 0.0,
1909
+ 0.0
1910
+ ],
1911
+ "std": [
1912
+ 0.0,
1913
+ 0.0,
1914
+ 0.0,
1915
+ 0.0,
1916
+ 0.0,
1917
+ 0.0,
1918
+ 0.0
1919
+ ]
1920
+ }
1921
+ },
1922
+ "jaco_play": {
1923
+ "action": {
1924
+ "mask": [
1925
+ true,
1926
+ true,
1927
+ true,
1928
+ true,
1929
+ true,
1930
+ true,
1931
+ false
1932
+ ],
1933
+ "max": [
1934
+ 0.20000000298023224,
1935
+ 0.20000000298023224,
1936
+ 0.20000000298023224,
1937
+ 0.0,
1938
+ 0.0,
1939
+ 0.0,
1940
+ 1.0
1941
+ ],
1942
+ "mean": [
1943
+ 0.0009658430935814977,
1944
+ -0.00580078037455678,
1945
+ -0.00395062193274498,
1946
+ 0.0,
1947
+ 0.0,
1948
+ 0.0,
1949
+ 0.34934908151626587
1950
+ ],
1951
+ "min": [
1952
+ -0.20000000298023224,
1953
+ -0.20000000298023224,
1954
+ -0.20000000298023224,
1955
+ 0.0,
1956
+ 0.0,
1957
+ 0.0,
1958
+ 0.0
1959
+ ],
1960
+ "q01": [
1961
+ -0.20000000298023224,
1962
+ -0.20000000298023224,
1963
+ -0.20000000298023224,
1964
+ 0.0,
1965
+ 0.0,
1966
+ 0.0,
1967
+ 0.0
1968
+ ],
1969
+ "q99": [
1970
+ 0.20000000298023224,
1971
+ 0.20000000298023224,
1972
+ 0.20000000298023224,
1973
+ 0.0,
1974
+ 0.0,
1975
+ 0.0,
1976
+ 1.0
1977
+ ],
1978
+ "std": [
1979
+ 0.12235074490308762,
1980
+ 0.09678777307271957,
1981
+ 0.11155334860086441,
1982
+ 0.0,
1983
+ 0.0,
1984
+ 0.0,
1985
+ 0.4768252968788147
1986
+ ]
1987
+ },
1988
+ "num_trajectories": 1085,
1989
+ "num_transitions": 77965,
1990
+ "proprio": {
1991
+ "max": [
1992
+ 0.0,
1993
+ 0.0,
1994
+ 0.0,
1995
+ 0.0,
1996
+ 0.0,
1997
+ 0.0,
1998
+ 0.0
1999
+ ],
2000
+ "mean": [
2001
+ 0.0,
2002
+ 0.0,
2003
+ 0.0,
2004
+ 0.0,
2005
+ 0.0,
2006
+ 0.0,
2007
+ 0.0
2008
+ ],
2009
+ "min": [
2010
+ 0.0,
2011
+ 0.0,
2012
+ 0.0,
2013
+ 0.0,
2014
+ 0.0,
2015
+ 0.0,
2016
+ 0.0
2017
+ ],
2018
+ "q01": [
2019
+ 0.0,
2020
+ 0.0,
2021
+ 0.0,
2022
+ 0.0,
2023
+ 0.0,
2024
+ 0.0,
2025
+ 0.0
2026
+ ],
2027
+ "q99": [
2028
+ 0.0,
2029
+ 0.0,
2030
+ 0.0,
2031
+ 0.0,
2032
+ 0.0,
2033
+ 0.0,
2034
+ 0.0
2035
+ ],
2036
+ "std": [
2037
+ 0.0,
2038
+ 0.0,
2039
+ 0.0,
2040
+ 0.0,
2041
+ 0.0,
2042
+ 0.0,
2043
+ 0.0
2044
+ ]
2045
+ }
2046
+ },
2047
+ "kuka": {
2048
+ "action": {
2049
+ "mask": [
2050
+ true,
2051
+ true,
2052
+ true,
2053
+ true,
2054
+ true,
2055
+ true,
2056
+ false
2057
+ ],
2058
+ "max": [
2059
+ 0.1697135865688324,
2060
+ 0.2777623236179352,
2061
+ 0.43710532784461975,
2062
+ 0.0,
2063
+ 0.0,
2064
+ 1.9684287309646606,
2065
+ 1.0
2066
+ ],
2067
+ "mean": [
2068
+ -0.0004668905457947403,
2069
+ 0.00040138536132872105,
2070
+ -0.001280792523175478,
2071
+ 0.0,
2072
+ 0.0,
2073
+ -0.03722453489899635,
2074
+ 0.4131543040275574
2075
+ ],
2076
+ "min": [
2077
+ -0.159867063164711,
2078
+ -0.2892282009124756,
2079
+ -0.2795473635196686,
2080
+ 0.0,
2081
+ 0.0,
2082
+ -1.9875637292861938,
2083
+ 0.0
2084
+ ],
2085
+ "q01": [
2086
+ -0.06619441494345665,
2087
+ -0.08713878810405731,
2088
+ -0.15083016991615295,
2089
+ 0.0,
2090
+ 0.0,
2091
+ -0.5415697038173676,
2092
+ 0.0
2093
+ ],
2094
+ "q99": [
2095
+ 0.06601839080452929,
2096
+ 0.08732476785779003,
2097
+ 0.18168179214000715,
2098
+ 0.0,
2099
+ 0.0,
2100
+ 0.2923380345106127,
2101
+ 1.0
2102
+ ],
2103
+ "std": [
2104
+ 0.02083250693976879,
2105
+ 0.02915887162089348,
2106
+ 0.06422865390777588,
2107
+ 0.0,
2108
+ 0.0,
2109
+ 0.14224295318126678,
2110
+ 0.49086448550224304
2111
+ ]
2112
+ },
2113
+ "num_trajectories": 209880,
2114
+ "num_transitions": 2455879,
2115
+ "proprio": {
2116
+ "max": [
2117
+ 0.0,
2118
+ 0.0,
2119
+ 0.0,
2120
+ 0.0,
2121
+ 0.0,
2122
+ 0.0,
2123
+ 0.0
2124
+ ],
2125
+ "mean": [
2126
+ 0.0,
2127
+ 0.0,
2128
+ 0.0,
2129
+ 0.0,
2130
+ 0.0,
2131
+ 0.0,
2132
+ 0.0
2133
+ ],
2134
+ "min": [
2135
+ 0.0,
2136
+ 0.0,
2137
+ 0.0,
2138
+ 0.0,
2139
+ 0.0,
2140
+ 0.0,
2141
+ 0.0
2142
+ ],
2143
+ "q01": [
2144
+ 0.0,
2145
+ 0.0,
2146
+ 0.0,
2147
+ 0.0,
2148
+ 0.0,
2149
+ 0.0,
2150
+ 0.0
2151
+ ],
2152
+ "q99": [
2153
+ 0.0,
2154
+ 0.0,
2155
+ 0.0,
2156
+ 0.0,
2157
+ 0.0,
2158
+ 0.0,
2159
+ 0.0
2160
+ ],
2161
+ "std": [
2162
+ 0.0,
2163
+ 0.0,
2164
+ 0.0,
2165
+ 0.0,
2166
+ 0.0,
2167
+ 0.0,
2168
+ 0.0
2169
+ ]
2170
+ }
2171
+ },
2172
+ "nyu_franka_play_dataset_converted_externally_to_rlds": {
2173
+ "action": {
2174
+ "mask": [
2175
+ true,
2176
+ true,
2177
+ true,
2178
+ true,
2179
+ true,
2180
+ true,
2181
+ false
2182
+ ],
2183
+ "max": [
2184
+ 0.06424188613891602,
2185
+ 0.07027634978294373,
2186
+ 0.06129661202430725,
2187
+ 6.281067848205566,
2188
+ 0.1967729926109314,
2189
+ 0.26377415657043457,
2190
+ 1.0
2191
+ ],
2192
+ "mean": [
2193
+ 0.001021989737637341,
2194
+ -0.00012002651783404872,
2195
+ 0.00032894269679673016,
2196
+ 0.0015034361276775599,
2197
+ -0.002198522910475731,
2198
+ -0.001663230243138969,
2199
+ 0.7230083346366882
2200
+ ],
2201
+ "min": [
2202
+ -0.05952230095863342,
2203
+ -0.07232445478439331,
2204
+ -0.06730806827545166,
2205
+ -6.278434753417969,
2206
+ -0.21479034423828125,
2207
+ -0.3627619743347168,
2208
+ 0.0
2209
+ ],
2210
+ "q01": [
2211
+ -0.03199600875377655,
2212
+ -0.032861671447753905,
2213
+ -0.03368805110454559,
2214
+ -0.12080862045288086,
2215
+ -0.12175218224525451,
2216
+ -0.11370223641395569,
2217
+ 0.0
2218
+ ],
2219
+ "q99": [
2220
+ 0.03101520001888276,
2221
+ 0.0373908892273903,
2222
+ 0.03646374464035038,
2223
+ 0.11764093399047852,
2224
+ 0.1258920183777809,
2225
+ 0.09366151213645942,
2226
+ 1.0
2227
+ ],
2228
+ "std": [
2229
+ 0.01327415369451046,
2230
+ 0.013215910643339157,
2231
+ 0.012822109274566174,
2232
+ 0.2732451558113098,
2233
+ 0.057022541761398315,
2234
+ 0.039172880351543427,
2235
+ 0.44752755761146545
2236
+ ]
2237
+ },
2238
+ "num_trajectories": 456,
2239
+ "num_transitions": 44875,
2240
+ "proprio": {
2241
+ "max": [
2242
+ 0.0,
2243
+ 0.0,
2244
+ 0.0,
2245
+ 0.0,
2246
+ 0.0,
2247
+ 0.0,
2248
+ 0.0
2249
+ ],
2250
+ "mean": [
2251
+ 0.0,
2252
+ 0.0,
2253
+ 0.0,
2254
+ 0.0,
2255
+ 0.0,
2256
+ 0.0,
2257
+ 0.0
2258
+ ],
2259
+ "min": [
2260
+ 0.0,
2261
+ 0.0,
2262
+ 0.0,
2263
+ 0.0,
2264
+ 0.0,
2265
+ 0.0,
2266
+ 0.0
2267
+ ],
2268
+ "q01": [
2269
+ 0.0,
2270
+ 0.0,
2271
+ 0.0,
2272
+ 0.0,
2273
+ 0.0,
2274
+ 0.0,
2275
+ 0.0
2276
+ ],
2277
+ "q99": [
2278
+ 0.0,
2279
+ 0.0,
2280
+ 0.0,
2281
+ 0.0,
2282
+ 0.0,
2283
+ 0.0,
2284
+ 0.0
2285
+ ],
2286
+ "std": [
2287
+ 0.0,
2288
+ 0.0,
2289
+ 0.0,
2290
+ 0.0,
2291
+ 0.0,
2292
+ 0.0,
2293
+ 0.0
2294
+ ]
2295
+ }
2296
+ },
2297
+ "roboturk": {
2298
+ "action": {
2299
+ "mask": [
2300
+ true,
2301
+ true,
2302
+ true,
2303
+ true,
2304
+ true,
2305
+ true,
2306
+ false
2307
+ ],
2308
+ "max": [
2309
+ 0.39124172925949097,
2310
+ 0.4601028263568878,
2311
+ 0.4870833456516266,
2312
+ 1.816888689994812,
2313
+ 1.8240282535552979,
2314
+ 1.4824820756912231,
2315
+ 1.0
2316
+ ],
2317
+ "mean": [
2318
+ 0.0014448732836171985,
2319
+ -0.0015945249469950795,
2320
+ -0.0011753785656765103,
2321
+ 0.0023012510500848293,
2322
+ -0.0009382463176734746,
2323
+ -0.00011485807772260159,
2324
+ 0.5746025443077087
2325
+ ],
2326
+ "min": [
2327
+ -0.6546999216079712,
2328
+ -0.6365841031074524,
2329
+ -0.4217723608016968,
2330
+ -1.6695482730865479,
2331
+ -1.8023357391357422,
2332
+ -1.4630827903747559,
2333
+ 0.0
2334
+ ],
2335
+ "q01": [
2336
+ -0.1342635464668274,
2337
+ -0.19996687173843383,
2338
+ -0.1482972100377083,
2339
+ -0.20720748245716095,
2340
+ -0.09676413893699647,
2341
+ -0.18075634717941286,
2342
+ 0.0
2343
+ ],
2344
+ "q99": [
2345
+ 0.14956976801157001,
2346
+ 0.1805950567126275,
2347
+ 0.18841815620660796,
2348
+ 0.21615413755178453,
2349
+ 0.09457383215427405,
2350
+ 0.18543301910162005,
2351
+ 1.0
2352
+ ],
2353
+ "std": [
2354
+ 0.04935386776924133,
2355
+ 0.0635455846786499,
2356
+ 0.061164740473032,
2357
+ 0.09553450345993042,
2358
+ 0.08420111238956451,
2359
+ 0.06517903506755829,
2360
+ 0.49452081322669983
2361
+ ]
2362
+ },
2363
+ "num_trajectories": 1995,
2364
+ "num_transitions": 187507,
2365
+ "proprio": {
2366
+ "max": [
2367
+ 0.0,
2368
+ 0.0,
2369
+ 0.0,
2370
+ 0.0,
2371
+ 0.0,
2372
+ 0.0,
2373
+ 0.0
2374
+ ],
2375
+ "mean": [
2376
+ 0.0,
2377
+ 0.0,
2378
+ 0.0,
2379
+ 0.0,
2380
+ 0.0,
2381
+ 0.0,
2382
+ 0.0
2383
+ ],
2384
+ "min": [
2385
+ 0.0,
2386
+ 0.0,
2387
+ 0.0,
2388
+ 0.0,
2389
+ 0.0,
2390
+ 0.0,
2391
+ 0.0
2392
+ ],
2393
+ "q01": [
2394
+ 0.0,
2395
+ 0.0,
2396
+ 0.0,
2397
+ 0.0,
2398
+ 0.0,
2399
+ 0.0,
2400
+ 0.0
2401
+ ],
2402
+ "q99": [
2403
+ 0.0,
2404
+ 0.0,
2405
+ 0.0,
2406
+ 0.0,
2407
+ 0.0,
2408
+ 0.0,
2409
+ 0.0
2410
+ ],
2411
+ "std": [
2412
+ 0.0,
2413
+ 0.0,
2414
+ 0.0,
2415
+ 0.0,
2416
+ 0.0,
2417
+ 0.0,
2418
+ 0.0
2419
+ ]
2420
+ }
2421
+ },
2422
+ "stanford_hydra_dataset_converted_externally_to_rlds": {
2423
+ "action": {
2424
+ "mask": [
2425
+ true,
2426
+ true,
2427
+ true,
2428
+ true,
2429
+ true,
2430
+ true,
2431
+ false
2432
+ ],
2433
+ "max": [
2434
+ 0.02499854564666748,
2435
+ 0.02499903365969658,
2436
+ 0.024999922141432762,
2437
+ 0.24974457919597626,
2438
+ 0.24997030198574066,
2439
+ 0.24999946355819702,
2440
+ 1.0
2441
+ ],
2442
+ "mean": [
2443
+ 0.0007790001109242439,
2444
+ 0.00013707754260394722,
2445
+ -0.0002548607881180942,
2446
+ 0.0012903271708637476,
2447
+ -0.004751681815832853,
2448
+ 0.002692886395379901,
2449
+ 0.48855218291282654
2450
+ ],
2451
+ "min": [
2452
+ -0.024999044835567474,
2453
+ -0.024999700486660004,
2454
+ -0.02499929815530777,
2455
+ -0.24993225932121277,
2456
+ -0.2499666064977646,
2457
+ -0.2499932497739792,
2458
+ 0.0
2459
+ ],
2460
+ "q01": [
2461
+ -0.019992006458342076,
2462
+ -0.02415412735193968,
2463
+ -0.022941758055239916,
2464
+ -0.11085530579090118,
2465
+ -0.12024572037160397,
2466
+ -0.13314770206809043,
2467
+ 0.0
2468
+ ],
2469
+ "q99": [
2470
+ 0.022886231057345868,
2471
+ 0.022358838934451335,
2472
+ 0.02410089675337076,
2473
+ 0.12370114490389822,
2474
+ 0.11323311634361738,
2475
+ 0.18474749639630164,
2476
+ 1.0
2477
+ ],
2478
+ "std": [
2479
+ 0.008022161200642586,
2480
+ 0.009131459519267082,
2481
+ 0.009574338793754578,
2482
+ 0.04122216999530792,
2483
+ 0.0384303517639637,
2484
+ 0.04606688767671585,
2485
+ 0.49976691603660583
2486
+ ]
2487
+ },
2488
+ "num_trajectories": 570,
2489
+ "num_transitions": 358234,
2490
+ "proprio": {
2491
+ "max": [
2492
+ 0.0,
2493
+ 0.0,
2494
+ 0.0,
2495
+ 0.0,
2496
+ 0.0,
2497
+ 0.0,
2498
+ 0.0
2499
+ ],
2500
+ "mean": [
2501
+ 0.0,
2502
+ 0.0,
2503
+ 0.0,
2504
+ 0.0,
2505
+ 0.0,
2506
+ 0.0,
2507
+ 0.0
2508
+ ],
2509
+ "min": [
2510
+ 0.0,
2511
+ 0.0,
2512
+ 0.0,
2513
+ 0.0,
2514
+ 0.0,
2515
+ 0.0,
2516
+ 0.0
2517
+ ],
2518
+ "q01": [
2519
+ 0.0,
2520
+ 0.0,
2521
+ 0.0,
2522
+ 0.0,
2523
+ 0.0,
2524
+ 0.0,
2525
+ 0.0
2526
+ ],
2527
+ "q99": [
2528
+ 0.0,
2529
+ 0.0,
2530
+ 0.0,
2531
+ 0.0,
2532
+ 0.0,
2533
+ 0.0,
2534
+ 0.0
2535
+ ],
2536
+ "std": [
2537
+ 0.0,
2538
+ 0.0,
2539
+ 0.0,
2540
+ 0.0,
2541
+ 0.0,
2542
+ 0.0,
2543
+ 0.0
2544
+ ]
2545
+ }
2546
+ },
2547
+ "taco_play": {
2548
+ "action": {
2549
+ "mask": [
2550
+ true,
2551
+ true,
2552
+ true,
2553
+ true,
2554
+ true,
2555
+ true,
2556
+ false
2557
+ ],
2558
+ "max": [
2559
+ 1.4915844202041626,
2560
+ 2.1842432022094727,
2561
+ 2.6836395263671875,
2562
+ 5.035226821899414,
2563
+ 2.665864944458008,
2564
+ 4.250768661499023,
2565
+ 1.0
2566
+ ],
2567
+ "mean": [
2568
+ -0.003845922416076064,
2569
+ 0.009671456180512905,
2570
+ 0.012780580669641495,
2571
+ -0.005403771996498108,
2572
+ -0.009606587700545788,
2573
+ -0.002480733208358288,
2574
+ 0.4263913035392761
2575
+ ],
2576
+ "min": [
2577
+ -4.242457866668701,
2578
+ -3.192805051803589,
2579
+ -1.3371467590332031,
2580
+ -4.202683448791504,
2581
+ -2.6722638607025146,
2582
+ -3.3467135429382324,
2583
+ 0.0
2584
+ ],
2585
+ "q01": [
2586
+ -0.7106140398979186,
2587
+ -1.056944659948349,
2588
+ -0.5878450274467468,
2589
+ -0.7682853937149048,
2590
+ -0.7180147767066956,
2591
+ -1.5527938604354858,
2592
+ 0.0
2593
+ ],
2594
+ "q99": [
2595
+ 0.6482916426658629,
2596
+ 1.0051310062408447,
2597
+ 0.9480248689651489,
2598
+ 0.6926478147506714,
2599
+ 0.6351067513227462,
2600
+ 1.628010264635086,
2601
+ 1.0
2602
+ ],
2603
+ "std": [
2604
+ 0.23254038393497467,
2605
+ 0.36298269033432007,
2606
+ 0.28692901134490967,
2607
+ 0.2617705166339874,
2608
+ 0.2438892275094986,
2609
+ 0.5216503143310547,
2610
+ 0.4946896731853485
2611
+ ]
2612
+ },
2613
+ "num_trajectories": 3603,
2614
+ "num_transitions": 237798,
2615
+ "proprio": {
2616
+ "max": [
2617
+ 0.0,
2618
+ 0.0,
2619
+ 0.0,
2620
+ 0.0,
2621
+ 0.0,
2622
+ 0.0,
2623
+ 0.0
2624
+ ],
2625
+ "mean": [
2626
+ 0.0,
2627
+ 0.0,
2628
+ 0.0,
2629
+ 0.0,
2630
+ 0.0,
2631
+ 0.0,
2632
+ 0.0
2633
+ ],
2634
+ "min": [
2635
+ 0.0,
2636
+ 0.0,
2637
+ 0.0,
2638
+ 0.0,
2639
+ 0.0,
2640
+ 0.0,
2641
+ 0.0
2642
+ ],
2643
+ "q01": [
2644
+ 0.0,
2645
+ 0.0,
2646
+ 0.0,
2647
+ 0.0,
2648
+ 0.0,
2649
+ 0.0,
2650
+ 0.0
2651
+ ],
2652
+ "q99": [
2653
+ 0.0,
2654
+ 0.0,
2655
+ 0.0,
2656
+ 0.0,
2657
+ 0.0,
2658
+ 0.0,
2659
+ 0.0
2660
+ ],
2661
+ "std": [
2662
+ 0.0,
2663
+ 0.0,
2664
+ 0.0,
2665
+ 0.0,
2666
+ 0.0,
2667
+ 0.0,
2668
+ 0.0
2669
+ ]
2670
+ }
2671
+ },
2672
+ "toto": {
2673
+ "action": {
2674
+ "mask": [
2675
+ true,
2676
+ true,
2677
+ true,
2678
+ true,
2679
+ true,
2680
+ true,
2681
+ false
2682
+ ],
2683
+ "max": [
2684
+ 0.6839867234230042,
2685
+ 0.4454185664653778,
2686
+ 0.7984078526496887,
2687
+ 2.120781660079956,
2688
+ 1.371164321899414,
2689
+ 1.4118704795837402,
2690
+ 0.0
2691
+ ],
2692
+ "mean": [
2693
+ 0.38542115688323975,
2694
+ 0.007769413758069277,
2695
+ 0.3632740378379822,
2696
+ -0.6652036905288696,
2697
+ 0.1890396922826767,
2698
+ 0.03298724442720413,
2699
+ 0.0
2700
+ ],
2701
+ "min": [
2702
+ 0.09922284632921219,
2703
+ -0.5180193781852722,
2704
+ 0.13791072368621826,
2705
+ -2.635117530822754,
2706
+ -1.0734480619430542,
2707
+ -1.9282547235488892,
2708
+ 0.0
2709
+ ],
2710
+ "q01": [
2711
+ 0.1756722891330719,
2712
+ -0.3077590811252594,
2713
+ 0.235383919775486,
2714
+ -2.0908505964279174,
2715
+ -0.6191593289375306,
2716
+ -0.7488683319091797,
2717
+ 0.0
2718
+ ],
2719
+ "q99": [
2720
+ 0.6136963081359863,
2721
+ 0.33704194784164443,
2722
+ 0.6681221985816956,
2723
+ 0.7422861719131538,
2724
+ 0.7955395007133507,
2725
+ 0.740464625358582,
2726
+ 0.0
2727
+ ],
2728
+ "std": [
2729
+ 0.12211652100086212,
2730
+ 0.19378550350666046,
2731
+ 0.10178236663341522,
2732
+ 0.5725259184837341,
2733
+ 0.29884573817253113,
2734
+ 0.3259911835193634,
2735
+ 0.0
2736
+ ]
2737
+ },
2738
+ "num_trajectories": 1003,
2739
+ "num_transitions": 325699,
2740
+ "proprio": {
2741
+ "max": [
2742
+ 0.0,
2743
+ 0.0,
2744
+ 0.0,
2745
+ 0.0,
2746
+ 0.0,
2747
+ 0.0,
2748
+ 0.0
2749
+ ],
2750
+ "mean": [
2751
+ 0.0,
2752
+ 0.0,
2753
+ 0.0,
2754
+ 0.0,
2755
+ 0.0,
2756
+ 0.0,
2757
+ 0.0
2758
+ ],
2759
+ "min": [
2760
+ 0.0,
2761
+ 0.0,
2762
+ 0.0,
2763
+ 0.0,
2764
+ 0.0,
2765
+ 0.0,
2766
+ 0.0
2767
+ ],
2768
+ "q01": [
2769
+ 0.0,
2770
+ 0.0,
2771
+ 0.0,
2772
+ 0.0,
2773
+ 0.0,
2774
+ 0.0,
2775
+ 0.0
2776
+ ],
2777
+ "q99": [
2778
+ 0.0,
2779
+ 0.0,
2780
+ 0.0,
2781
+ 0.0,
2782
+ 0.0,
2783
+ 0.0,
2784
+ 0.0
2785
+ ],
2786
+ "std": [
2787
+ 0.0,
2788
+ 0.0,
2789
+ 0.0,
2790
+ 0.0,
2791
+ 0.0,
2792
+ 0.0,
2793
+ 0.0
2794
+ ]
2795
+ }
2796
+ },
2797
+ "ucsd_kitchen_dataset_converted_externally_to_rlds": {
2798
+ "action": {
2799
+ "mask": [
2800
+ true,
2801
+ true,
2802
+ true,
2803
+ true,
2804
+ true,
2805
+ true,
2806
+ false
2807
+ ],
2808
+ "max": [
2809
+ 678.0,
2810
+ 400.0,
2811
+ 507.0,
2812
+ 180.00001525878906,
2813
+ 6.000013828277588,
2814
+ 116.99998474121094,
2815
+ 1.0
2816
+ ],
2817
+ "mean": [
2818
+ 410.37567138671875,
2819
+ 116.9518814086914,
2820
+ 192.35032653808594,
2821
+ -121.22441864013672,
2822
+ -33.84893035888672,
2823
+ 50.016136169433594,
2824
+ 0.741813600063324
2825
+ ],
2826
+ "min": [
2827
+ 172.0,
2828
+ -166.0,
2829
+ -99.99999237060547,
2830
+ -180.00001525878906,
2831
+ -89.0,
2832
+ -96.00010681152344,
2833
+ 0.0
2834
+ ],
2835
+ "q01": [
2836
+ 200.00001052856445,
2837
+ -102.31004211425781,
2838
+ -94.99993370056153,
2839
+ -180.00001525878906,
2840
+ -88.00001525878906,
2841
+ -38.999977111816406,
2842
+ 0.0
2843
+ ],
2844
+ "q99": [
2845
+ 637.0,
2846
+ 368.30999999999995,
2847
+ 493.0,
2848
+ 180.00001525878906,
2849
+ 0.999983012676239,
2850
+ 105.00001525878906,
2851
+ 1.0
2852
+ ],
2853
+ "std": [
2854
+ 122.81494903564453,
2855
+ 108.8009033203125,
2856
+ 130.303466796875,
2857
+ 116.28205108642578,
2858
+ 27.621843338012695,
2859
+ 41.02094650268555,
2860
+ 0.43763357400894165
2861
+ ]
2862
+ },
2863
+ "num_trajectories": 150,
2864
+ "num_transitions": 3970,
2865
+ "proprio": {
2866
+ "max": [
2867
+ 0.0,
2868
+ 0.0,
2869
+ 0.0,
2870
+ 0.0,
2871
+ 0.0,
2872
+ 0.0,
2873
+ 0.0
2874
+ ],
2875
+ "mean": [
2876
+ 0.0,
2877
+ 0.0,
2878
+ 0.0,
2879
+ 0.0,
2880
+ 0.0,
2881
+ 0.0,
2882
+ 0.0
2883
+ ],
2884
+ "min": [
2885
+ 0.0,
2886
+ 0.0,
2887
+ 0.0,
2888
+ 0.0,
2889
+ 0.0,
2890
+ 0.0,
2891
+ 0.0
2892
+ ],
2893
+ "q01": [
2894
+ 0.0,
2895
+ 0.0,
2896
+ 0.0,
2897
+ 0.0,
2898
+ 0.0,
2899
+ 0.0,
2900
+ 0.0
2901
+ ],
2902
+ "q99": [
2903
+ 0.0,
2904
+ 0.0,
2905
+ 0.0,
2906
+ 0.0,
2907
+ 0.0,
2908
+ 0.0,
2909
+ 0.0
2910
+ ],
2911
+ "std": [
2912
+ 0.0,
2913
+ 0.0,
2914
+ 0.0,
2915
+ 0.0,
2916
+ 0.0,
2917
+ 0.0,
2918
+ 0.0
2919
+ ]
2920
+ }
2921
+ },
2922
+ "utaustin_mutex": {
2923
+ "action": {
2924
+ "mask": [
2925
+ true,
2926
+ true,
2927
+ true,
2928
+ true,
2929
+ true,
2930
+ true,
2931
+ false
2932
+ ],
2933
+ "max": [
2934
+ 1.0,
2935
+ 1.0,
2936
+ 1.0,
2937
+ 0.375,
2938
+ 0.375,
2939
+ 0.375,
2940
+ 1.0
2941
+ ],
2942
+ "mean": [
2943
+ 0.06176406890153885,
2944
+ -0.005005486309528351,
2945
+ 0.10216785222291946,
2946
+ -0.03314131125807762,
2947
+ 0.013895004987716675,
2948
+ -0.011317633092403412,
2949
+ 0.5038976669311523
2950
+ ],
2951
+ "min": [
2952
+ -1.0,
2953
+ -1.0,
2954
+ -1.0,
2955
+ -0.375,
2956
+ -0.375,
2957
+ -0.375,
2958
+ 0.0
2959
+ ],
2960
+ "q01": [
2961
+ -0.4285714328289032,
2962
+ -0.9800000190734863,
2963
+ -0.5571428537368774,
2964
+ -0.375,
2965
+ -0.15642857551574707,
2966
+ -0.335357129573822,
2967
+ 0.0
2968
+ ],
2969
+ "q99": [
2970
+ 0.5914285778999329,
2971
+ 0.9714285731315613,
2972
+ 1.0,
2973
+ 0.3278571367263794,
2974
+ 0.207857146859169,
2975
+ 0.25607141852378845,
2976
+ 1.0
2977
+ ],
2978
+ "std": [
2979
+ 0.1875014752149582,
2980
+ 0.4468473494052887,
2981
+ 0.3792876601219177,
2982
+ 0.14097853004932404,
2983
+ 0.06453701853752136,
2984
+ 0.11765272170305252,
2985
+ 0.501045286655426
2986
+ ]
2987
+ },
2988
+ "num_trajectories": 1500,
2989
+ "num_transitions": 361883,
2990
+ "proprio": {
2991
+ "max": [
2992
+ 0.0,
2993
+ 0.0,
2994
+ 0.0,
2995
+ 0.0,
2996
+ 0.0,
2997
+ 0.0,
2998
+ 0.0
2999
+ ],
3000
+ "mean": [
3001
+ 0.0,
3002
+ 0.0,
3003
+ 0.0,
3004
+ 0.0,
3005
+ 0.0,
3006
+ 0.0,
3007
+ 0.0
3008
+ ],
3009
+ "min": [
3010
+ 0.0,
3011
+ 0.0,
3012
+ 0.0,
3013
+ 0.0,
3014
+ 0.0,
3015
+ 0.0,
3016
+ 0.0
3017
+ ],
3018
+ "q01": [
3019
+ 0.0,
3020
+ 0.0,
3021
+ 0.0,
3022
+ 0.0,
3023
+ 0.0,
3024
+ 0.0,
3025
+ 0.0
3026
+ ],
3027
+ "q99": [
3028
+ 0.0,
3029
+ 0.0,
3030
+ 0.0,
3031
+ 0.0,
3032
+ 0.0,
3033
+ 0.0,
3034
+ 0.0
3035
+ ],
3036
+ "std": [
3037
+ 0.0,
3038
+ 0.0,
3039
+ 0.0,
3040
+ 0.0,
3041
+ 0.0,
3042
+ 0.0,
3043
+ 0.0
3044
+ ]
3045
+ }
3046
+ },
3047
+ "viola": {
3048
+ "action": {
3049
+ "mask": [
3050
+ true,
3051
+ true,
3052
+ true,
3053
+ true,
3054
+ true,
3055
+ true,
3056
+ false
3057
+ ],
3058
+ "max": [
3059
+ 1.0,
3060
+ 1.0,
3061
+ 1.0,
3062
+ 0.375,
3063
+ 0.36321428418159485,
3064
+ 0.375,
3065
+ 1.0
3066
+ ],
3067
+ "mean": [
3068
+ 0.04761844128370285,
3069
+ -0.029204415157437325,
3070
+ 0.05586736649274826,
3071
+ -0.002618510741740465,
3072
+ 0.006867344491183758,
3073
+ -0.01682133786380291,
3074
+ 0.7323777675628662
3075
+ ],
3076
+ "min": [
3077
+ -1.0,
3078
+ -1.0,
3079
+ -1.0,
3080
+ -0.375,
3081
+ -0.375,
3082
+ -0.375,
3083
+ 0.0
3084
+ ],
3085
+ "q01": [
3086
+ -0.9628571271896362,
3087
+ -1.0,
3088
+ -1.0,
3089
+ -0.26249998807907104,
3090
+ -0.21321429312229156,
3091
+ -0.3385714292526245,
3092
+ 0.0
3093
+ ],
3094
+ "q99": [
3095
+ 0.9114285707473755,
3096
+ 0.868571400642395,
3097
+ 1.0,
3098
+ 0.2817857265472412,
3099
+ 0.2239285707473755,
3100
+ 0.3557142913341522,
3101
+ 1.0
3102
+ ],
3103
+ "std": [
3104
+ 0.39157867431640625,
3105
+ 0.4076525568962097,
3106
+ 0.40077948570251465,
3107
+ 0.10023996233940125,
3108
+ 0.0844319611787796,
3109
+ 0.10375042259693146,
3110
+ 0.44260647892951965
3111
+ ]
3112
+ },
3113
+ "num_trajectories": 150,
3114
+ "num_transitions": 76324,
3115
+ "proprio": {
3116
+ "max": [
3117
+ 0.0,
3118
+ 0.0,
3119
+ 0.0,
3120
+ 0.0,
3121
+ 0.0,
3122
+ 0.0,
3123
+ 0.0
3124
+ ],
3125
+ "mean": [
3126
+ 0.0,
3127
+ 0.0,
3128
+ 0.0,
3129
+ 0.0,
3130
+ 0.0,
3131
+ 0.0,
3132
+ 0.0
3133
+ ],
3134
+ "min": [
3135
+ 0.0,
3136
+ 0.0,
3137
+ 0.0,
3138
+ 0.0,
3139
+ 0.0,
3140
+ 0.0,
3141
+ 0.0
3142
+ ],
3143
+ "q01": [
3144
+ 0.0,
3145
+ 0.0,
3146
+ 0.0,
3147
+ 0.0,
3148
+ 0.0,
3149
+ 0.0,
3150
+ 0.0
3151
+ ],
3152
+ "q99": [
3153
+ 0.0,
3154
+ 0.0,
3155
+ 0.0,
3156
+ 0.0,
3157
+ 0.0,
3158
+ 0.0,
3159
+ 0.0
3160
+ ],
3161
+ "std": [
3162
+ 0.0,
3163
+ 0.0,
3164
+ 0.0,
3165
+ 0.0,
3166
+ 0.0,
3167
+ 0.0,
3168
+ 0.0
3169
+ ]
3170
+ }
3171
+ }
3172
+ },
3173
+ "output_projector_states": false,
3174
+ "pad_to_multiple_of": 64,
3175
+ "pad_token_id": 32000,
3176
+ "text_config": {
3177
+ "model_type": "llama",
3178
+ "pad_token_id": 32000,
3179
+ "torch_dtype": "bfloat16",
3180
+ "vocab_size": 32064
3181
+ },
3182
+ "timm_model_ids": [
3183
+ "vit_large_patch14_reg4_dinov2.lvd142m",
3184
+ "vit_so400m_patch14_siglip_224"
3185
+ ],
3186
+ "timm_override_act_layers": [
3187
+ null,
3188
+ null
3189
+ ],
3190
+ "torch_dtype": "bfloat16",
3191
+ "transformers_version": "4.40.1",
3192
+ "use_fused_vision_backbone": true,
3193
+ "vision_backbone_id": "dinosiglip-vit-so-224px"
3194
+ }
configuration_prismatic.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ configuration_prismatic.py
3
+
4
+ HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
5
+ Default configuration specifies `siglip-224px+7b`.
6
+ """
7
+
8
+ from typing import Any, Dict, List, Optional
9
+
10
+ from transformers import PretrainedConfig
11
+ from transformers.models.auto import CONFIG_MAPPING
12
+
13
+ # === Utilities for Mapping Prismatic names to HF names ===
14
+ # fmt: off
15
+ VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
16
+ "clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
17
+
18
+ "clip-vit-l-336px": [336],
19
+ "siglip-vit-so400m-384px": [384],
20
+
21
+ "dinoclip-vit-l-336px": [336, 336],
22
+ "dinosiglip-vit-so-224px": [224, 224],
23
+ "dinosiglip-vit-so-384px": [384, 384],
24
+ }
25
+ VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
26
+ "clip-vit-l": ["vit_large_patch14_clip_224.openai"],
27
+ "clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
28
+
29
+ "dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
30
+ "in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
31
+
32
+ "siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
33
+ "siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
34
+
35
+ "dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
36
+ "dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
37
+ "dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
38
+ }
39
+ TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
40
+ "clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
41
+ "dinov2-vit-l": [None], "in1k-vit-l": [None],
42
+ "siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
43
+ "dinoclip-vit-l-336px": [None, "quick_gelu"],
44
+ "dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
45
+ }
46
+
47
+ LLM_BACKBONE_TO_HF_PATH = {
48
+ "llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
49
+ "llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
50
+
51
+ "vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
52
+
53
+ "mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
54
+ "mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
55
+
56
+ "phi-2-3b": "microsoft/phi-2",
57
+ }
58
+ LLM_BACKBONE_TO_HF_METACLASS = {
59
+ "llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
60
+ "vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",
61
+
62
+ "mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
63
+
64
+ "phi-2-3b": "phi",
65
+ }
66
+
67
+ VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
68
+ VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
69
+ # fmt: on
70
+
71
+
72
+ class PrismaticConfig(PretrainedConfig):
73
+ model_type: str = "prismatic"
74
+ is_composition: bool = False
75
+
76
+ def __init__(
77
+ self,
78
+ vision_backbone_id: str = "siglip-vit-so400m",
79
+ llm_backbone_id: str = "vicuna-v15-7b",
80
+ arch_specifier: str = "no-align+gelu-mlp",
81
+ use_fused_vision_backbone: Optional[bool] = None,
82
+ image_resize_strategy: str = "letterbox",
83
+ text_config: Optional[Dict[str, Any]] = None,
84
+ llm_max_length: int = 2048,
85
+ pad_token_id: int = 32000,
86
+ pad_to_multiple_of: int = 64,
87
+ output_projector_states: bool = False,
88
+ **kwargs: str,
89
+ ) -> None:
90
+ if vision_backbone_id not in VALID_VISION_BACKBONES:
91
+ raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
92
+
93
+ if llm_backbone_id not in VALID_LLM_BACKBONES:
94
+ raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
95
+
96
+ # Set Prismatic Configuration Fields
97
+ self.vision_backbone_id = vision_backbone_id
98
+ self.llm_backbone_id = llm_backbone_id
99
+ self.arch_specifier = arch_specifier
100
+ self.output_projector_states = output_projector_states
101
+
102
+ # [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
103
+ self.use_fused_vision_backbone = (
104
+ use_fused_vision_backbone
105
+ if use_fused_vision_backbone is not None
106
+ else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
107
+ )
108
+
109
+ self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
110
+ self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
111
+ self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
112
+ self.image_resize_strategy = image_resize_strategy
113
+
114
+ self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
115
+ self.llm_max_length = llm_max_length
116
+ self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
117
+
118
+ # [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
119
+ self.text_config = (
120
+ CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
121
+ if text_config is not None
122
+ else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
123
+ )
124
+
125
+ # Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
126
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
127
+
128
+
129
+ class OpenVLAConfig(PrismaticConfig):
130
+ model_type: str = "openvla"
131
+
132
+ def __init__(
133
+ self,
134
+ norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
135
+ n_action_bins: int = 256,
136
+ **kwargs: str,
137
+ ) -> None:
138
+ self.norm_stats, self.n_action_bins = norm_stats, n_action_bins
139
+
140
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 32000,
6
+ "transformers_version": "4.41.2"
7
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a737cb3ee98e1b9839351c8c13700e0003275105b0b5d6774ca1d478165c356
3
+ size 4925122448
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:735b3d8dfbd58df1d2e6c167eadd160f9deb5cc75e39c1c06fd843d44b13cfa9
3
+ size 4947392496
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e2773aadb10135b5c07ca3fa1c04fa7bcdc2d6efb42bb59c323fd6ad015d52b
3
+ size 4947417456
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a6ab27ad9591c6729e0c5a8520e1a49804586a5a7db7fe68e55fcda8b9d3de6
3
+ size 262668432
model.safetensors.index.json ADDED
@@ -0,0 +1,989 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15082474368
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
109
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
128
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
131
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
132
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
133
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
134
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "language_model.model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
235
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
238
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
270
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
271
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
273
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
274
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
279
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
280
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
281
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
282
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
283
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
284
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
285
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
286
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
287
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "language_model.model.norm.weight": "model-00003-of-00004.safetensors",
297
+ "projector.fc1.bias": "model-00001-of-00004.safetensors",
298
+ "projector.fc1.weight": "model-00001-of-00004.safetensors",
299
+ "projector.fc2.bias": "model-00001-of-00004.safetensors",
300
+ "projector.fc2.weight": "model-00001-of-00004.safetensors",
301
+ "projector.fc3.bias": "model-00001-of-00004.safetensors",
302
+ "projector.fc3.weight": "model-00001-of-00004.safetensors",
303
+ "vision_backbone.featurizer.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
304
+ "vision_backbone.featurizer.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
305
+ "vision_backbone.featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
306
+ "vision_backbone.featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
307
+ "vision_backbone.featurizer.blocks.0.ls1.scale_factor": "model-00001-of-00004.safetensors",
308
+ "vision_backbone.featurizer.blocks.0.ls2.scale_factor": "model-00001-of-00004.safetensors",
309
+ "vision_backbone.featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
310
+ "vision_backbone.featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
311
+ "vision_backbone.featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
312
+ "vision_backbone.featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
313
+ "vision_backbone.featurizer.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
314
+ "vision_backbone.featurizer.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
315
+ "vision_backbone.featurizer.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
316
+ "vision_backbone.featurizer.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
317
+ "vision_backbone.featurizer.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
318
+ "vision_backbone.featurizer.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
319
+ "vision_backbone.featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
320
+ "vision_backbone.featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
321
+ "vision_backbone.featurizer.blocks.1.ls1.scale_factor": "model-00001-of-00004.safetensors",
322
+ "vision_backbone.featurizer.blocks.1.ls2.scale_factor": "model-00001-of-00004.safetensors",
323
+ "vision_backbone.featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
324
+ "vision_backbone.featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
325
+ "vision_backbone.featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
326
+ "vision_backbone.featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
327
+ "vision_backbone.featurizer.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
328
+ "vision_backbone.featurizer.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
329
+ "vision_backbone.featurizer.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
330
+ "vision_backbone.featurizer.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
331
+ "vision_backbone.featurizer.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
332
+ "vision_backbone.featurizer.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
333
+ "vision_backbone.featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
334
+ "vision_backbone.featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
335
+ "vision_backbone.featurizer.blocks.10.ls1.scale_factor": "model-00001-of-00004.safetensors",
336
+ "vision_backbone.featurizer.blocks.10.ls2.scale_factor": "model-00001-of-00004.safetensors",
337
+ "vision_backbone.featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
338
+ "vision_backbone.featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
339
+ "vision_backbone.featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
340
+ "vision_backbone.featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
341
+ "vision_backbone.featurizer.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
342
+ "vision_backbone.featurizer.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
343
+ "vision_backbone.featurizer.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
344
+ "vision_backbone.featurizer.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
345
+ "vision_backbone.featurizer.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
346
+ "vision_backbone.featurizer.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
347
+ "vision_backbone.featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
348
+ "vision_backbone.featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
349
+ "vision_backbone.featurizer.blocks.11.ls1.scale_factor": "model-00001-of-00004.safetensors",
350
+ "vision_backbone.featurizer.blocks.11.ls2.scale_factor": "model-00001-of-00004.safetensors",
351
+ "vision_backbone.featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
352
+ "vision_backbone.featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
353
+ "vision_backbone.featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
354
+ "vision_backbone.featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
355
+ "vision_backbone.featurizer.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
356
+ "vision_backbone.featurizer.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
357
+ "vision_backbone.featurizer.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
358
+ "vision_backbone.featurizer.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
359
+ "vision_backbone.featurizer.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
360
+ "vision_backbone.featurizer.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
361
+ "vision_backbone.featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
362
+ "vision_backbone.featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
363
+ "vision_backbone.featurizer.blocks.12.ls1.scale_factor": "model-00001-of-00004.safetensors",
364
+ "vision_backbone.featurizer.blocks.12.ls2.scale_factor": "model-00001-of-00004.safetensors",
365
+ "vision_backbone.featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
366
+ "vision_backbone.featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
367
+ "vision_backbone.featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
368
+ "vision_backbone.featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
369
+ "vision_backbone.featurizer.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
370
+ "vision_backbone.featurizer.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
371
+ "vision_backbone.featurizer.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
372
+ "vision_backbone.featurizer.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
373
+ "vision_backbone.featurizer.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
374
+ "vision_backbone.featurizer.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
375
+ "vision_backbone.featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
376
+ "vision_backbone.featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
377
+ "vision_backbone.featurizer.blocks.13.ls1.scale_factor": "model-00001-of-00004.safetensors",
378
+ "vision_backbone.featurizer.blocks.13.ls2.scale_factor": "model-00001-of-00004.safetensors",
379
+ "vision_backbone.featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
380
+ "vision_backbone.featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
381
+ "vision_backbone.featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
382
+ "vision_backbone.featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
383
+ "vision_backbone.featurizer.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
384
+ "vision_backbone.featurizer.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
385
+ "vision_backbone.featurizer.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
386
+ "vision_backbone.featurizer.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
387
+ "vision_backbone.featurizer.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
388
+ "vision_backbone.featurizer.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
389
+ "vision_backbone.featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
390
+ "vision_backbone.featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
391
+ "vision_backbone.featurizer.blocks.14.ls1.scale_factor": "model-00001-of-00004.safetensors",
392
+ "vision_backbone.featurizer.blocks.14.ls2.scale_factor": "model-00001-of-00004.safetensors",
393
+ "vision_backbone.featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
394
+ "vision_backbone.featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
395
+ "vision_backbone.featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
396
+ "vision_backbone.featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
397
+ "vision_backbone.featurizer.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
398
+ "vision_backbone.featurizer.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
399
+ "vision_backbone.featurizer.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
400
+ "vision_backbone.featurizer.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
401
+ "vision_backbone.featurizer.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
402
+ "vision_backbone.featurizer.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
403
+ "vision_backbone.featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
404
+ "vision_backbone.featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
405
+ "vision_backbone.featurizer.blocks.15.ls1.scale_factor": "model-00001-of-00004.safetensors",
406
+ "vision_backbone.featurizer.blocks.15.ls2.scale_factor": "model-00001-of-00004.safetensors",
407
+ "vision_backbone.featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
408
+ "vision_backbone.featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
409
+ "vision_backbone.featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
410
+ "vision_backbone.featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
411
+ "vision_backbone.featurizer.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
412
+ "vision_backbone.featurizer.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
413
+ "vision_backbone.featurizer.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
414
+ "vision_backbone.featurizer.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
415
+ "vision_backbone.featurizer.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
416
+ "vision_backbone.featurizer.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
417
+ "vision_backbone.featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
418
+ "vision_backbone.featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
419
+ "vision_backbone.featurizer.blocks.16.ls1.scale_factor": "model-00001-of-00004.safetensors",
420
+ "vision_backbone.featurizer.blocks.16.ls2.scale_factor": "model-00001-of-00004.safetensors",
421
+ "vision_backbone.featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
422
+ "vision_backbone.featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
423
+ "vision_backbone.featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
424
+ "vision_backbone.featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
425
+ "vision_backbone.featurizer.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
426
+ "vision_backbone.featurizer.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
427
+ "vision_backbone.featurizer.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
428
+ "vision_backbone.featurizer.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
429
+ "vision_backbone.featurizer.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
430
+ "vision_backbone.featurizer.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
431
+ "vision_backbone.featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
432
+ "vision_backbone.featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
433
+ "vision_backbone.featurizer.blocks.17.ls1.scale_factor": "model-00001-of-00004.safetensors",
434
+ "vision_backbone.featurizer.blocks.17.ls2.scale_factor": "model-00001-of-00004.safetensors",
435
+ "vision_backbone.featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
436
+ "vision_backbone.featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
437
+ "vision_backbone.featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
438
+ "vision_backbone.featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
439
+ "vision_backbone.featurizer.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
440
+ "vision_backbone.featurizer.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
441
+ "vision_backbone.featurizer.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
442
+ "vision_backbone.featurizer.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
443
+ "vision_backbone.featurizer.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
444
+ "vision_backbone.featurizer.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
445
+ "vision_backbone.featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
446
+ "vision_backbone.featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
447
+ "vision_backbone.featurizer.blocks.18.ls1.scale_factor": "model-00001-of-00004.safetensors",
448
+ "vision_backbone.featurizer.blocks.18.ls2.scale_factor": "model-00001-of-00004.safetensors",
449
+ "vision_backbone.featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
450
+ "vision_backbone.featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
451
+ "vision_backbone.featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
452
+ "vision_backbone.featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
453
+ "vision_backbone.featurizer.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
454
+ "vision_backbone.featurizer.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
455
+ "vision_backbone.featurizer.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
456
+ "vision_backbone.featurizer.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
457
+ "vision_backbone.featurizer.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
458
+ "vision_backbone.featurizer.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
459
+ "vision_backbone.featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
460
+ "vision_backbone.featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
461
+ "vision_backbone.featurizer.blocks.19.ls1.scale_factor": "model-00001-of-00004.safetensors",
462
+ "vision_backbone.featurizer.blocks.19.ls2.scale_factor": "model-00001-of-00004.safetensors",
463
+ "vision_backbone.featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
464
+ "vision_backbone.featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
465
+ "vision_backbone.featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
466
+ "vision_backbone.featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
467
+ "vision_backbone.featurizer.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
468
+ "vision_backbone.featurizer.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
469
+ "vision_backbone.featurizer.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
470
+ "vision_backbone.featurizer.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
471
+ "vision_backbone.featurizer.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
472
+ "vision_backbone.featurizer.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
473
+ "vision_backbone.featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
474
+ "vision_backbone.featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
475
+ "vision_backbone.featurizer.blocks.2.ls1.scale_factor": "model-00001-of-00004.safetensors",
476
+ "vision_backbone.featurizer.blocks.2.ls2.scale_factor": "model-00001-of-00004.safetensors",
477
+ "vision_backbone.featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
478
+ "vision_backbone.featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
479
+ "vision_backbone.featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
480
+ "vision_backbone.featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
481
+ "vision_backbone.featurizer.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
482
+ "vision_backbone.featurizer.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
483
+ "vision_backbone.featurizer.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
484
+ "vision_backbone.featurizer.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
485
+ "vision_backbone.featurizer.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
486
+ "vision_backbone.featurizer.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
487
+ "vision_backbone.featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
488
+ "vision_backbone.featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
489
+ "vision_backbone.featurizer.blocks.20.ls1.scale_factor": "model-00001-of-00004.safetensors",
490
+ "vision_backbone.featurizer.blocks.20.ls2.scale_factor": "model-00001-of-00004.safetensors",
491
+ "vision_backbone.featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
492
+ "vision_backbone.featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
493
+ "vision_backbone.featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
494
+ "vision_backbone.featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
495
+ "vision_backbone.featurizer.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
496
+ "vision_backbone.featurizer.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
497
+ "vision_backbone.featurizer.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
498
+ "vision_backbone.featurizer.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
499
+ "vision_backbone.featurizer.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
500
+ "vision_backbone.featurizer.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
501
+ "vision_backbone.featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
502
+ "vision_backbone.featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
503
+ "vision_backbone.featurizer.blocks.21.ls1.scale_factor": "model-00001-of-00004.safetensors",
504
+ "vision_backbone.featurizer.blocks.21.ls2.scale_factor": "model-00001-of-00004.safetensors",
505
+ "vision_backbone.featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
506
+ "vision_backbone.featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
507
+ "vision_backbone.featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
508
+ "vision_backbone.featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
509
+ "vision_backbone.featurizer.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
510
+ "vision_backbone.featurizer.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
511
+ "vision_backbone.featurizer.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
512
+ "vision_backbone.featurizer.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
513
+ "vision_backbone.featurizer.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
514
+ "vision_backbone.featurizer.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
515
+ "vision_backbone.featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
516
+ "vision_backbone.featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
517
+ "vision_backbone.featurizer.blocks.22.ls1.scale_factor": "model-00001-of-00004.safetensors",
518
+ "vision_backbone.featurizer.blocks.22.ls2.scale_factor": "model-00001-of-00004.safetensors",
519
+ "vision_backbone.featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
520
+ "vision_backbone.featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
521
+ "vision_backbone.featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
522
+ "vision_backbone.featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
523
+ "vision_backbone.featurizer.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
524
+ "vision_backbone.featurizer.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
525
+ "vision_backbone.featurizer.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
526
+ "vision_backbone.featurizer.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
527
+ "vision_backbone.featurizer.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
528
+ "vision_backbone.featurizer.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
529
+ "vision_backbone.featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
530
+ "vision_backbone.featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
531
+ "vision_backbone.featurizer.blocks.23.ls1.scale_factor": "model-00001-of-00004.safetensors",
532
+ "vision_backbone.featurizer.blocks.23.ls2.scale_factor": "model-00001-of-00004.safetensors",
533
+ "vision_backbone.featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
534
+ "vision_backbone.featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
535
+ "vision_backbone.featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
536
+ "vision_backbone.featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
537
+ "vision_backbone.featurizer.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
538
+ "vision_backbone.featurizer.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
539
+ "vision_backbone.featurizer.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
540
+ "vision_backbone.featurizer.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
541
+ "vision_backbone.featurizer.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
542
+ "vision_backbone.featurizer.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
543
+ "vision_backbone.featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
544
+ "vision_backbone.featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
545
+ "vision_backbone.featurizer.blocks.3.ls1.scale_factor": "model-00001-of-00004.safetensors",
546
+ "vision_backbone.featurizer.blocks.3.ls2.scale_factor": "model-00001-of-00004.safetensors",
547
+ "vision_backbone.featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
548
+ "vision_backbone.featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
549
+ "vision_backbone.featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
550
+ "vision_backbone.featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
551
+ "vision_backbone.featurizer.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
552
+ "vision_backbone.featurizer.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
553
+ "vision_backbone.featurizer.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
554
+ "vision_backbone.featurizer.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
555
+ "vision_backbone.featurizer.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
556
+ "vision_backbone.featurizer.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
557
+ "vision_backbone.featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
558
+ "vision_backbone.featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
559
+ "vision_backbone.featurizer.blocks.4.ls1.scale_factor": "model-00001-of-00004.safetensors",
560
+ "vision_backbone.featurizer.blocks.4.ls2.scale_factor": "model-00001-of-00004.safetensors",
561
+ "vision_backbone.featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
562
+ "vision_backbone.featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
563
+ "vision_backbone.featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
564
+ "vision_backbone.featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
565
+ "vision_backbone.featurizer.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
566
+ "vision_backbone.featurizer.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
567
+ "vision_backbone.featurizer.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
568
+ "vision_backbone.featurizer.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
569
+ "vision_backbone.featurizer.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
570
+ "vision_backbone.featurizer.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
571
+ "vision_backbone.featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
572
+ "vision_backbone.featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
573
+ "vision_backbone.featurizer.blocks.5.ls1.scale_factor": "model-00001-of-00004.safetensors",
574
+ "vision_backbone.featurizer.blocks.5.ls2.scale_factor": "model-00001-of-00004.safetensors",
575
+ "vision_backbone.featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
576
+ "vision_backbone.featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
577
+ "vision_backbone.featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
578
+ "vision_backbone.featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
579
+ "vision_backbone.featurizer.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
580
+ "vision_backbone.featurizer.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
581
+ "vision_backbone.featurizer.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
582
+ "vision_backbone.featurizer.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
583
+ "vision_backbone.featurizer.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
584
+ "vision_backbone.featurizer.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
585
+ "vision_backbone.featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
586
+ "vision_backbone.featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
587
+ "vision_backbone.featurizer.blocks.6.ls1.scale_factor": "model-00001-of-00004.safetensors",
588
+ "vision_backbone.featurizer.blocks.6.ls2.scale_factor": "model-00001-of-00004.safetensors",
589
+ "vision_backbone.featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
590
+ "vision_backbone.featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
591
+ "vision_backbone.featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
592
+ "vision_backbone.featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
593
+ "vision_backbone.featurizer.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
594
+ "vision_backbone.featurizer.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
595
+ "vision_backbone.featurizer.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
596
+ "vision_backbone.featurizer.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
597
+ "vision_backbone.featurizer.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
598
+ "vision_backbone.featurizer.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
599
+ "vision_backbone.featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
600
+ "vision_backbone.featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
601
+ "vision_backbone.featurizer.blocks.7.ls1.scale_factor": "model-00001-of-00004.safetensors",
602
+ "vision_backbone.featurizer.blocks.7.ls2.scale_factor": "model-00001-of-00004.safetensors",
603
+ "vision_backbone.featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
604
+ "vision_backbone.featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
605
+ "vision_backbone.featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
606
+ "vision_backbone.featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
607
+ "vision_backbone.featurizer.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
608
+ "vision_backbone.featurizer.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
609
+ "vision_backbone.featurizer.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
610
+ "vision_backbone.featurizer.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
611
+ "vision_backbone.featurizer.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
612
+ "vision_backbone.featurizer.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
613
+ "vision_backbone.featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
614
+ "vision_backbone.featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
615
+ "vision_backbone.featurizer.blocks.8.ls1.scale_factor": "model-00001-of-00004.safetensors",
616
+ "vision_backbone.featurizer.blocks.8.ls2.scale_factor": "model-00001-of-00004.safetensors",
617
+ "vision_backbone.featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
618
+ "vision_backbone.featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
619
+ "vision_backbone.featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
620
+ "vision_backbone.featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
621
+ "vision_backbone.featurizer.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
622
+ "vision_backbone.featurizer.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
623
+ "vision_backbone.featurizer.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
624
+ "vision_backbone.featurizer.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
625
+ "vision_backbone.featurizer.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
626
+ "vision_backbone.featurizer.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
627
+ "vision_backbone.featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
628
+ "vision_backbone.featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
629
+ "vision_backbone.featurizer.blocks.9.ls1.scale_factor": "model-00001-of-00004.safetensors",
630
+ "vision_backbone.featurizer.blocks.9.ls2.scale_factor": "model-00001-of-00004.safetensors",
631
+ "vision_backbone.featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
632
+ "vision_backbone.featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
633
+ "vision_backbone.featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
634
+ "vision_backbone.featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
635
+ "vision_backbone.featurizer.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
636
+ "vision_backbone.featurizer.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
637
+ "vision_backbone.featurizer.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
638
+ "vision_backbone.featurizer.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
639
+ "vision_backbone.featurizer.cls_token": "model-00001-of-00004.safetensors",
640
+ "vision_backbone.featurizer.norm.bias": "model-00001-of-00004.safetensors",
641
+ "vision_backbone.featurizer.norm.weight": "model-00001-of-00004.safetensors",
642
+ "vision_backbone.featurizer.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
643
+ "vision_backbone.featurizer.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
644
+ "vision_backbone.featurizer.pos_embed": "model-00001-of-00004.safetensors",
645
+ "vision_backbone.featurizer.reg_token": "model-00001-of-00004.safetensors",
646
+ "vision_backbone.fused_featurizer.attn_pool.kv.bias": "model-00001-of-00004.safetensors",
647
+ "vision_backbone.fused_featurizer.attn_pool.kv.weight": "model-00001-of-00004.safetensors",
648
+ "vision_backbone.fused_featurizer.attn_pool.latent": "model-00001-of-00004.safetensors",
649
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc1.bias": "model-00001-of-00004.safetensors",
650
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc1.weight": "model-00001-of-00004.safetensors",
651
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc2.bias": "model-00001-of-00004.safetensors",
652
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc2.weight": "model-00001-of-00004.safetensors",
653
+ "vision_backbone.fused_featurizer.attn_pool.norm.bias": "model-00001-of-00004.safetensors",
654
+ "vision_backbone.fused_featurizer.attn_pool.norm.weight": "model-00001-of-00004.safetensors",
655
+ "vision_backbone.fused_featurizer.attn_pool.proj.bias": "model-00001-of-00004.safetensors",
656
+ "vision_backbone.fused_featurizer.attn_pool.proj.weight": "model-00001-of-00004.safetensors",
657
+ "vision_backbone.fused_featurizer.attn_pool.q.bias": "model-00001-of-00004.safetensors",
658
+ "vision_backbone.fused_featurizer.attn_pool.q.weight": "model-00001-of-00004.safetensors",
659
+ "vision_backbone.fused_featurizer.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
660
+ "vision_backbone.fused_featurizer.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
661
+ "vision_backbone.fused_featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
662
+ "vision_backbone.fused_featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
663
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
664
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
665
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
666
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
667
+ "vision_backbone.fused_featurizer.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
668
+ "vision_backbone.fused_featurizer.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
669
+ "vision_backbone.fused_featurizer.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
670
+ "vision_backbone.fused_featurizer.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
671
+ "vision_backbone.fused_featurizer.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
672
+ "vision_backbone.fused_featurizer.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
673
+ "vision_backbone.fused_featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
674
+ "vision_backbone.fused_featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
675
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
676
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
677
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
678
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
679
+ "vision_backbone.fused_featurizer.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
680
+ "vision_backbone.fused_featurizer.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
681
+ "vision_backbone.fused_featurizer.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
682
+ "vision_backbone.fused_featurizer.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
683
+ "vision_backbone.fused_featurizer.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
684
+ "vision_backbone.fused_featurizer.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
685
+ "vision_backbone.fused_featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
686
+ "vision_backbone.fused_featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
687
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
688
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
689
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
690
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
691
+ "vision_backbone.fused_featurizer.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
692
+ "vision_backbone.fused_featurizer.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
693
+ "vision_backbone.fused_featurizer.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
694
+ "vision_backbone.fused_featurizer.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
695
+ "vision_backbone.fused_featurizer.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
696
+ "vision_backbone.fused_featurizer.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
697
+ "vision_backbone.fused_featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
698
+ "vision_backbone.fused_featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
699
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
700
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
701
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
702
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
703
+ "vision_backbone.fused_featurizer.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
704
+ "vision_backbone.fused_featurizer.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
705
+ "vision_backbone.fused_featurizer.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
706
+ "vision_backbone.fused_featurizer.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
707
+ "vision_backbone.fused_featurizer.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
708
+ "vision_backbone.fused_featurizer.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
709
+ "vision_backbone.fused_featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
710
+ "vision_backbone.fused_featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
711
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
712
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
713
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
714
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
715
+ "vision_backbone.fused_featurizer.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
716
+ "vision_backbone.fused_featurizer.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
717
+ "vision_backbone.fused_featurizer.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
718
+ "vision_backbone.fused_featurizer.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
719
+ "vision_backbone.fused_featurizer.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
720
+ "vision_backbone.fused_featurizer.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
721
+ "vision_backbone.fused_featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
722
+ "vision_backbone.fused_featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
723
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
724
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
725
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
726
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
727
+ "vision_backbone.fused_featurizer.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
728
+ "vision_backbone.fused_featurizer.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
729
+ "vision_backbone.fused_featurizer.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
730
+ "vision_backbone.fused_featurizer.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
731
+ "vision_backbone.fused_featurizer.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
732
+ "vision_backbone.fused_featurizer.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
733
+ "vision_backbone.fused_featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
734
+ "vision_backbone.fused_featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
735
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
736
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
737
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
738
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
739
+ "vision_backbone.fused_featurizer.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
740
+ "vision_backbone.fused_featurizer.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
741
+ "vision_backbone.fused_featurizer.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
742
+ "vision_backbone.fused_featurizer.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
743
+ "vision_backbone.fused_featurizer.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
744
+ "vision_backbone.fused_featurizer.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
745
+ "vision_backbone.fused_featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
746
+ "vision_backbone.fused_featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
747
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
748
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
749
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
750
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
751
+ "vision_backbone.fused_featurizer.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
752
+ "vision_backbone.fused_featurizer.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
753
+ "vision_backbone.fused_featurizer.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
754
+ "vision_backbone.fused_featurizer.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
755
+ "vision_backbone.fused_featurizer.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
756
+ "vision_backbone.fused_featurizer.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
757
+ "vision_backbone.fused_featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
758
+ "vision_backbone.fused_featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
759
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
760
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
761
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
762
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
763
+ "vision_backbone.fused_featurizer.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
764
+ "vision_backbone.fused_featurizer.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
765
+ "vision_backbone.fused_featurizer.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
766
+ "vision_backbone.fused_featurizer.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
767
+ "vision_backbone.fused_featurizer.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
768
+ "vision_backbone.fused_featurizer.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
769
+ "vision_backbone.fused_featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
770
+ "vision_backbone.fused_featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
771
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
772
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
773
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
774
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
775
+ "vision_backbone.fused_featurizer.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
776
+ "vision_backbone.fused_featurizer.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
777
+ "vision_backbone.fused_featurizer.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
778
+ "vision_backbone.fused_featurizer.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
779
+ "vision_backbone.fused_featurizer.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
780
+ "vision_backbone.fused_featurizer.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
781
+ "vision_backbone.fused_featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
782
+ "vision_backbone.fused_featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
783
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
784
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
785
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
786
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
787
+ "vision_backbone.fused_featurizer.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
788
+ "vision_backbone.fused_featurizer.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
789
+ "vision_backbone.fused_featurizer.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
790
+ "vision_backbone.fused_featurizer.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
791
+ "vision_backbone.fused_featurizer.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
792
+ "vision_backbone.fused_featurizer.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
793
+ "vision_backbone.fused_featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
794
+ "vision_backbone.fused_featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
795
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
796
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
797
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
798
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
799
+ "vision_backbone.fused_featurizer.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
800
+ "vision_backbone.fused_featurizer.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
801
+ "vision_backbone.fused_featurizer.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
802
+ "vision_backbone.fused_featurizer.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
803
+ "vision_backbone.fused_featurizer.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
804
+ "vision_backbone.fused_featurizer.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
805
+ "vision_backbone.fused_featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
806
+ "vision_backbone.fused_featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
807
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
808
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
809
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
810
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
811
+ "vision_backbone.fused_featurizer.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
812
+ "vision_backbone.fused_featurizer.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
813
+ "vision_backbone.fused_featurizer.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
814
+ "vision_backbone.fused_featurizer.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
815
+ "vision_backbone.fused_featurizer.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
816
+ "vision_backbone.fused_featurizer.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
817
+ "vision_backbone.fused_featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
818
+ "vision_backbone.fused_featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
819
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
820
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
821
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
822
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
823
+ "vision_backbone.fused_featurizer.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
824
+ "vision_backbone.fused_featurizer.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
825
+ "vision_backbone.fused_featurizer.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
826
+ "vision_backbone.fused_featurizer.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
827
+ "vision_backbone.fused_featurizer.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
828
+ "vision_backbone.fused_featurizer.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
829
+ "vision_backbone.fused_featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
830
+ "vision_backbone.fused_featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
831
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
832
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
833
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
834
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
835
+ "vision_backbone.fused_featurizer.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
836
+ "vision_backbone.fused_featurizer.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
837
+ "vision_backbone.fused_featurizer.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
838
+ "vision_backbone.fused_featurizer.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
839
+ "vision_backbone.fused_featurizer.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
840
+ "vision_backbone.fused_featurizer.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
841
+ "vision_backbone.fused_featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
842
+ "vision_backbone.fused_featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
843
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
844
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
845
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
846
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
847
+ "vision_backbone.fused_featurizer.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
848
+ "vision_backbone.fused_featurizer.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
849
+ "vision_backbone.fused_featurizer.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
850
+ "vision_backbone.fused_featurizer.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
851
+ "vision_backbone.fused_featurizer.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
852
+ "vision_backbone.fused_featurizer.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
853
+ "vision_backbone.fused_featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
854
+ "vision_backbone.fused_featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
855
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
856
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
857
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
858
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
859
+ "vision_backbone.fused_featurizer.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
860
+ "vision_backbone.fused_featurizer.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
861
+ "vision_backbone.fused_featurizer.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
862
+ "vision_backbone.fused_featurizer.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
863
+ "vision_backbone.fused_featurizer.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
864
+ "vision_backbone.fused_featurizer.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
865
+ "vision_backbone.fused_featurizer.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
866
+ "vision_backbone.fused_featurizer.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
867
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
868
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
869
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
870
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
871
+ "vision_backbone.fused_featurizer.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
872
+ "vision_backbone.fused_featurizer.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
873
+ "vision_backbone.fused_featurizer.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
874
+ "vision_backbone.fused_featurizer.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
875
+ "vision_backbone.fused_featurizer.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
876
+ "vision_backbone.fused_featurizer.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
877
+ "vision_backbone.fused_featurizer.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
878
+ "vision_backbone.fused_featurizer.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
879
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
880
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
881
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
882
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
883
+ "vision_backbone.fused_featurizer.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
884
+ "vision_backbone.fused_featurizer.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
885
+ "vision_backbone.fused_featurizer.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
886
+ "vision_backbone.fused_featurizer.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
887
+ "vision_backbone.fused_featurizer.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
888
+ "vision_backbone.fused_featurizer.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
889
+ "vision_backbone.fused_featurizer.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
890
+ "vision_backbone.fused_featurizer.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
891
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
892
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
893
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
894
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
895
+ "vision_backbone.fused_featurizer.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
896
+ "vision_backbone.fused_featurizer.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
897
+ "vision_backbone.fused_featurizer.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
898
+ "vision_backbone.fused_featurizer.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
899
+ "vision_backbone.fused_featurizer.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
900
+ "vision_backbone.fused_featurizer.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
901
+ "vision_backbone.fused_featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
902
+ "vision_backbone.fused_featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
903
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
904
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
905
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
906
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
907
+ "vision_backbone.fused_featurizer.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
908
+ "vision_backbone.fused_featurizer.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
909
+ "vision_backbone.fused_featurizer.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
910
+ "vision_backbone.fused_featurizer.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
911
+ "vision_backbone.fused_featurizer.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
912
+ "vision_backbone.fused_featurizer.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
913
+ "vision_backbone.fused_featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
914
+ "vision_backbone.fused_featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
915
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
916
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
917
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
918
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
919
+ "vision_backbone.fused_featurizer.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
920
+ "vision_backbone.fused_featurizer.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
921
+ "vision_backbone.fused_featurizer.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
922
+ "vision_backbone.fused_featurizer.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
923
+ "vision_backbone.fused_featurizer.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
924
+ "vision_backbone.fused_featurizer.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
925
+ "vision_backbone.fused_featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
926
+ "vision_backbone.fused_featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
927
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
928
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
929
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
930
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
931
+ "vision_backbone.fused_featurizer.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
932
+ "vision_backbone.fused_featurizer.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
933
+ "vision_backbone.fused_featurizer.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
934
+ "vision_backbone.fused_featurizer.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
935
+ "vision_backbone.fused_featurizer.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
936
+ "vision_backbone.fused_featurizer.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
937
+ "vision_backbone.fused_featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
938
+ "vision_backbone.fused_featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
939
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
940
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
941
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
942
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
943
+ "vision_backbone.fused_featurizer.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
944
+ "vision_backbone.fused_featurizer.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
945
+ "vision_backbone.fused_featurizer.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
946
+ "vision_backbone.fused_featurizer.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
947
+ "vision_backbone.fused_featurizer.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
948
+ "vision_backbone.fused_featurizer.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
949
+ "vision_backbone.fused_featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
950
+ "vision_backbone.fused_featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
951
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
952
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
953
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
954
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
955
+ "vision_backbone.fused_featurizer.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
956
+ "vision_backbone.fused_featurizer.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
957
+ "vision_backbone.fused_featurizer.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
958
+ "vision_backbone.fused_featurizer.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
959
+ "vision_backbone.fused_featurizer.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
960
+ "vision_backbone.fused_featurizer.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
961
+ "vision_backbone.fused_featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
962
+ "vision_backbone.fused_featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
963
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
964
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
965
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
966
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
967
+ "vision_backbone.fused_featurizer.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
968
+ "vision_backbone.fused_featurizer.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
969
+ "vision_backbone.fused_featurizer.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
970
+ "vision_backbone.fused_featurizer.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
971
+ "vision_backbone.fused_featurizer.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
972
+ "vision_backbone.fused_featurizer.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
973
+ "vision_backbone.fused_featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
974
+ "vision_backbone.fused_featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
975
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
976
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
977
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
978
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
979
+ "vision_backbone.fused_featurizer.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
980
+ "vision_backbone.fused_featurizer.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
981
+ "vision_backbone.fused_featurizer.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
982
+ "vision_backbone.fused_featurizer.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
983
+ "vision_backbone.fused_featurizer.norm.bias": "model-00001-of-00004.safetensors",
984
+ "vision_backbone.fused_featurizer.norm.weight": "model-00001-of-00004.safetensors",
985
+ "vision_backbone.fused_featurizer.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
986
+ "vision_backbone.fused_featurizer.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
987
+ "vision_backbone.fused_featurizer.pos_embed": "model-00001-of-00004.safetensors"
988
+ }
989
+ }
modeling_prismatic.py ADDED
@@ -0,0 +1,583 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ modeling_prismatic.py
3
+
4
+ Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions, inheriting
5
+ from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained, but exactly replicate the
6
+ logic in `prismatic.models.vlms.prismatic.py`.
7
+
8
+ Note =>> for the time being, not adding the custom HF "docstring" formatting.
9
+
10
+ References [LLaVa, IDEFICS-2]:
11
+ => https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py
12
+ => https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/modeling_idefics2.py
13
+ """
14
+ from transformers import AutoModelForVision2Seq, AutoProcessor
15
+ import logging
16
+ from dataclasses import dataclass
17
+ from functools import partial
18
+ from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+ import timm
22
+ import tokenizers
23
+ import torch
24
+ import torch.nn as nn
25
+ import transformers
26
+ from timm.models.vision_transformer import LayerScale
27
+ from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
28
+ from transformers.modeling_outputs import ModelOutput
29
+
30
+ from .configuration_prismatic import OpenVLAConfig, PrismaticConfig
31
+
32
+ # Get Logger
33
+ logger = logging.getLogger(__name__)
34
+
35
+
36
+ # === PyTorch/HuggingFace Default IGNORE_INDEX (for CrossEntropyLoss labels)
37
+ IGNORE_INDEX = -100
38
+
39
+
40
+ # === Utility Functions for Monkey-Patching ===
41
+ def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
42
+ def wrapper(*args: Any, **kwargs: Any) -> Any:
43
+ result = fn(*args, **kwargs)
44
+ return result[0] if isinstance(result, tuple) else result
45
+
46
+ return wrapper
47
+
48
+
49
+ # HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
50
+ # =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
51
+ # =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
52
+ def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
53
+ return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
54
+
55
+
56
+ def ls_apply_patch(ls_module: LayerScale):
57
+ ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
58
+ ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
59
+ del ls_module.gamma
60
+
61
+
62
+ # === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
63
+ class PrismaticVisionBackbone(nn.Module):
64
+ def __init__(
65
+ self,
66
+ use_fused_vision_backbone: bool,
67
+ image_sizes: List[int],
68
+ timm_model_ids: List[str],
69
+ timm_override_act_layers: List[Optional[str]],
70
+ ) -> None:
71
+ super().__init__()
72
+ self.use_fused_vision_backbone = use_fused_vision_backbone
73
+
74
+ # [Contract] Validate number of (fused) vision backbones, create "alpha" featurizer and Instantiate
75
+ # =>> Note :: Monkey-Patch the `forward()` function of the backbone to ensure FSDP-compatibility
76
+ # Hardcodes `get_intermediate_layers` to return the **SECOND-TO-LAST** layer patches!
77
+ assert len(timm_model_ids) <= 2, "Prismatic models only support up to 2 (fused) vision backbones!"
78
+ self.featurizer = timm.create_model(
79
+ timm_model_ids[0],
80
+ pretrained=False,
81
+ num_classes=0,
82
+ img_size=image_sizes[0],
83
+ act_layer=timm_override_act_layers[0],
84
+ )
85
+ self.featurizer.forward = unpack_tuple(
86
+ partial(self.featurizer.get_intermediate_layers, n={len(self.featurizer.blocks) - 2})
87
+ )
88
+ self.embed_dim = self.featurizer.embed_dim
89
+
90
+ # If `use_fused_vision_backbone` =>> create "beta" featurizer
91
+ if self.use_fused_vision_backbone:
92
+ self.fused_featurizer = timm.create_model(
93
+ timm_model_ids[1],
94
+ pretrained=False,
95
+ num_classes=0,
96
+ img_size=image_sizes[1],
97
+ act_layer=timm_override_act_layers[1],
98
+ )
99
+ self.fused_featurizer.forward = unpack_tuple(
100
+ partial(self.fused_featurizer.get_intermediate_layers, n={len(self.fused_featurizer.blocks) - 2})
101
+ )
102
+ self.embed_dim += self.fused_featurizer.embed_dim
103
+
104
+ # Patch `vision_backbone.featurizer` and `vision_backbone.fused_featurizer` with HF-Compatible LayerScale
105
+ for module in self.featurizer.modules():
106
+ if isinstance(module, LayerScale):
107
+ ls_apply_patch(module)
108
+
109
+ if self.use_fused_vision_backbone:
110
+ for module in self.fused_featurizer.modules():
111
+ if isinstance(module, LayerScale):
112
+ ls_apply_patch(module)
113
+
114
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
115
+ """Run image (`pixel_values`) through featurizer; if channel-stacked, then dispatch and sequence stack."""
116
+ if not self.use_fused_vision_backbone:
117
+ return self.featurizer(pixel_values)
118
+
119
+ # Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
120
+ img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
121
+ patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)
122
+
123
+ return torch.cat([patches, patches_fused], dim=2)
124
+
125
+
126
+ # === Prismatic Projector (nn.Module) Definitions ===
127
+ class PrismaticProjector(nn.Module):
128
+ def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
129
+ super().__init__()
130
+ self.use_fused_vision_backbone = use_fused_vision_backbone
131
+ self.vision_dim, self.llm_dim = vision_dim, llm_dim
132
+
133
+ # Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
134
+ if not self.use_fused_vision_backbone:
135
+ self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
136
+ self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
137
+ self.act_fn1 = nn.GELU()
138
+ else:
139
+ initial_projection_dim = 4 * vision_dim
140
+ self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
141
+ self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
142
+ self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
143
+ self.act_fn1 = nn.GELU()
144
+ self.act_fn2 = nn.GELU()
145
+
146
+ def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
147
+ if not self.use_fused_vision_backbone:
148
+ projected_features = self.fc1(img_patches)
149
+ projected_features = self.act_fn1(projected_features)
150
+ projected_features = self.fc2(projected_features)
151
+ else:
152
+ projected_features = self.fc1(img_patches)
153
+ projected_features = self.act_fn1(projected_features)
154
+ projected_features = self.fc2(projected_features)
155
+ projected_features = self.act_fn2(projected_features)
156
+ projected_features = self.fc3(projected_features)
157
+
158
+ return projected_features
159
+
160
+
161
+ # === Main HF Class Definitions ===
162
+ @dataclass
163
+ class PrismaticCausalLMOutputWithPast(ModelOutput):
164
+ """Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
165
+
166
+ loss: Optional[torch.FloatTensor] = None
167
+ logits: torch.FloatTensor = None
168
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
169
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
170
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
171
+
172
+ # Additions for VLMs
173
+ projector_features: Optional[torch.FloatTensor] = None
174
+
175
+
176
+ class PrismaticPreTrainedModel(PreTrainedModel):
177
+ config_class: PretrainedConfig = PrismaticConfig
178
+ base_model_prefix: str = "model"
179
+ supports_gradient_checkpointing: bool = True
180
+
181
+ _no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
182
+ _skip_keys_device_placement: str = "past_key_values"
183
+ _supports_flash_attn_2: bool = True
184
+
185
+ def _init_weights(self, module: nn.Module) -> None:
186
+ # Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
187
+ # => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
188
+ # https://github.com/TRI-ML/prismatic-vlms
189
+ std = (
190
+ self.config.initializer_range
191
+ if hasattr(self.config, "initializer_range")
192
+ else self.config.text_config.initializer_range
193
+ )
194
+
195
+ if hasattr(module, "class_embedding"):
196
+ module.class_embedding.data.normal_(mean=0.0, std=std)
197
+
198
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
199
+ module.weight.data.normal_(mean=0.0, std=std)
200
+ if module.bias is not None:
201
+ module.bias.data.zero_()
202
+ elif isinstance(module, nn.Embedding):
203
+ module.weight.data.normal_(mean=0.0, std=std)
204
+ if module.padding_idx is not None:
205
+ module.weight.data[module.padding_idx].zero_()
206
+
207
+ @property
208
+ def _supports_sdpa(self) -> bool:
209
+ """Check LLM supports SDPA Attention"""
210
+ return self.language_model._supports_sdpa
211
+
212
+
213
+ class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
214
+ def __init__(self, config: PrismaticConfig) -> None:
215
+ super().__init__(config)
216
+
217
+ # [Validation] Lightweight Validate on `config` Fields + Dependency Versions
218
+ if config.use_fused_vision_backbone is None:
219
+ raise ValueError("Missing config field `use_fused_vision_backbone`")
220
+
221
+ if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
222
+ raise NotImplementedError(
223
+ "TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
224
+ "if you urgently need support for latest TIMM versions."
225
+ )
226
+
227
+ if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
228
+ logger.warning(
229
+ f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
230
+ f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
231
+ f"there might be inference-time regressions due to dependency changes. If in doubt, please"
232
+ f"use the above versions."
233
+ )
234
+
235
+ # Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
236
+ self.vision_backbone = PrismaticVisionBackbone(
237
+ config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
238
+ )
239
+
240
+ # Create Multimodal Projector
241
+ self.projector = PrismaticProjector(
242
+ config.use_fused_vision_backbone,
243
+ vision_dim=self.vision_backbone.embed_dim,
244
+ llm_dim=config.text_config.hidden_size,
245
+ )
246
+
247
+ # Instantiate LLM Backbone
248
+ self.language_model = AutoModelForCausalLM.from_config(
249
+ config.text_config, attn_implementation=config._attn_implementation
250
+ )
251
+ self.vocab_size = config.text_config.vocab_size
252
+ self.pad_token_id = config.pad_token_id
253
+
254
+ # HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
255
+ self.post_init()
256
+
257
+ # === `PreTrainedModel` Boilerplate ===
258
+ def get_input_embeddings(self) -> nn.Module:
259
+ return self.language_model.get_input_embeddings()
260
+
261
+ def set_input_embeddings(self, value: nn.Module) -> None:
262
+ self.language_model.set_input_embeddings(value)
263
+
264
+ def get_output_embeddings(self) -> nn.Module:
265
+ return self.language_model.get_output_embeddings()
266
+
267
+ def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
268
+ self.language_model.set_output_embeddings(new_embeddings)
269
+
270
+ def get_decoder(self) -> nn.Module:
271
+ return self.language_model.get_decoder()
272
+
273
+ def set_decoder(self, decoder: nn.Module) -> None:
274
+ self.language_model.set_decoder(decoder)
275
+
276
+ def tie_weights(self) -> None:
277
+ self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
278
+
279
+ def resize_token_embeddings(
280
+ self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
281
+ ) -> nn.Embedding:
282
+ updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
283
+
284
+ # Update config/instance variables
285
+ self.config.text_config.vocab_size = updated_embeddings.num_embeddings
286
+ self.vocab_size = updated_embeddings.num_embeddings
287
+
288
+ return updated_embeddings
289
+
290
+ # === Core Prismatic VLM `forward()` Logic ===
291
+ def forward(
292
+ self,
293
+ input_ids: Optional[torch.LongTensor] = None,
294
+ attention_mask: Optional[torch.Tensor] = None,
295
+ pixel_values: Optional[torch.FloatTensor] = None,
296
+ labels: Optional[torch.LongTensor] = None,
297
+ inputs_embeds: Optional[torch.FloatTensor] = None,
298
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
299
+ use_cache: Optional[bool] = None,
300
+ output_attentions: Optional[bool] = None,
301
+ output_hidden_states: Optional[bool] = None,
302
+ output_projector_features: Optional[bool] = None,
303
+ return_dict: Optional[bool] = None,
304
+ ) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
305
+ """Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
306
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
307
+ output_hidden_states = (
308
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
309
+ )
310
+ output_projector_features = output_projector_features if output_projector_features is not None else False
311
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
312
+
313
+ # Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
314
+ use_cache = use_cache and not self.training
315
+
316
+ # Instantiate Placeholder for Projector Features
317
+ projected_patch_embeddings = None
318
+
319
+ # Note :: We only support forward passes with the following cases:
320
+ # => Cached Generation :: (input_ids.shape[1] == 1) and (past_key_values is not None)
321
+ # => Unimodal Forward :: (pixel_values is None)
322
+ # => Multimodal Forward :: (pixel_values is not None) and (input_ids/embeds.shape[0] == pixel_values.shape[0])
323
+
324
+ # === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
325
+ if input_ids.shape[1] == 1:
326
+ assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
327
+ assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
328
+ assert labels is None, "Unexpected key `labels` provided during cached generation!"
329
+ #print(998244353)
330
+ language_model_output = self.language_model(
331
+ input_ids=input_ids,
332
+ attention_mask=None,
333
+ position_ids=None,
334
+ past_key_values=past_key_values,
335
+ inputs_embeds=None,
336
+ labels=None,
337
+ use_cache=use_cache,
338
+ output_attentions=output_attentions,
339
+ output_hidden_states=output_hidden_states,
340
+ return_dict=return_dict,
341
+ )
342
+
343
+ # === Handle Unimodal Forward ===
344
+ elif pixel_values is None:
345
+ assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
346
+ assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
347
+
348
+ language_model_output = self.language_model(
349
+ input_ids=input_ids,
350
+ attention_mask=attention_mask,
351
+ position_ids=None,
352
+ past_key_values=None,
353
+ inputs_embeds=None,
354
+ labels=labels,
355
+ use_cache=use_cache,
356
+ output_attentions=output_attentions,
357
+ output_hidden_states=output_hidden_states,
358
+ return_dict=return_dict,
359
+ )
360
+
361
+ # === Handle Multimodal Forward ===
362
+ elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
363
+ assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
364
+ # Visual Feature Extraction
365
+ patch_features = self.vision_backbone(pixel_values)
366
+
367
+ # Projection Logic =>> Update Attention Mask
368
+ projected_patch_embeddings = self.projector(patch_features)
369
+ projected_patch_attention_mask = None
370
+ if attention_mask is not None:
371
+ projected_patch_attention_mask = torch.full(
372
+ (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
373
+ fill_value=True,
374
+ dtype=attention_mask.dtype,
375
+ device=attention_mask.device,
376
+ )
377
+
378
+ # Get Input Embeddings (from Language Model Embeddings)
379
+ input_embeddings = self.get_input_embeddings()(input_ids)
380
+
381
+ # Build Multimodal Embeddings & Attention Mask =>> Prismatic defaults to inserting after <BOS> token (1:)
382
+ multimodal_embeddings = torch.cat(
383
+ [input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
384
+ )
385
+
386
+ multimodal_attention_mask = None
387
+ if attention_mask is not None:
388
+ multimodal_attention_mask = torch.cat(
389
+ [attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
390
+ )
391
+ # Build Labels (if specified) =>> Ignore Labels for Patch Embeddings
392
+ multimodal_labels = None
393
+ if labels is not None:
394
+ projected_patch_labels = torch.full(
395
+ (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
396
+ fill_value=IGNORE_INDEX,
397
+ dtype=labels.dtype,
398
+ device=labels.device,
399
+ )
400
+
401
+ multimodal_labels = torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
402
+
403
+ # Dispatch to Language Model
404
+ language_model_output = self.language_model(
405
+ input_ids=None,
406
+ attention_mask=multimodal_attention_mask,
407
+ position_ids=None,
408
+ past_key_values=None,
409
+ inputs_embeds=multimodal_embeddings,
410
+ labels=multimodal_labels,
411
+ use_cache=use_cache,
412
+ output_attentions=output_attentions,
413
+ output_hidden_states=output_hidden_states,
414
+ return_dict=return_dict,
415
+ )
416
+
417
+ # === Otherwise =>> Assume Invalid! ===
418
+ elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
419
+ raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
420
+
421
+ else:
422
+ raise ValueError(
423
+ "Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
424
+ f"=> `input_ids` = {input_ids is not None}\n"
425
+ f"=> `attention_mask` = {attention_mask is not None}\n"
426
+ f"=> `pixel_values` = {pixel_values is not None}\n"
427
+ f"=> `labels` = {labels is not None}\n"
428
+ f"=> `input_embeds` = {inputs_embeds is not None}\n"
429
+ f"=> `past_key_values` = {past_key_values is not None}\n"
430
+ f"=> `use_cache` = {use_cache}"
431
+ )
432
+
433
+ # Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
434
+ if not return_dict:
435
+ if output_projector_features and (projected_patch_embeddings is not None):
436
+ return *language_model_output, projected_patch_embeddings
437
+
438
+ return language_model_output
439
+
440
+ return PrismaticCausalLMOutputWithPast(
441
+ loss=language_model_output.loss,
442
+ logits=language_model_output.logits,
443
+ past_key_values=language_model_output.past_key_values,
444
+ hidden_states=language_model_output.hidden_states,
445
+ attentions=language_model_output.attentions,
446
+ projector_features=projected_patch_embeddings,
447
+ )
448
+
449
+ # === GenerationMixin Methods ===
450
+ def prepare_inputs_for_generation(
451
+ self,
452
+ input_ids: Optional[torch.Tensor] = None,
453
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
454
+ inputs_embeds: Optional[torch.FloatTensor] = None,
455
+ pixel_values: Optional[torch.FloatTensor] = None,
456
+ attention_mask: Optional[torch.Tensor] = None,
457
+ **kwargs: str,
458
+ ) -> Dict[str, torch.Tensor]:
459
+ """Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
460
+ if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
461
+ (inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
462
+ ):
463
+ raise ValueError("Generation with batch size > 1 is not currently supported!")
464
+
465
+ # Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
466
+ if past_key_values is not None:
467
+ input_ids = input_ids[:, -1:]
468
+
469
+ # If `input_embeds` are passed, we only want to use them in the 1st generation step
470
+ if inputs_embeds is not None and past_key_values is None:
471
+ model_inputs = {"input_embeds": inputs_embeds}
472
+ else:
473
+ model_inputs = {"input_ids": input_ids}
474
+
475
+ # Make sure `pixel_values` are preserved in `model_inputs`
476
+ model_inputs.update(
477
+ {
478
+ "attention_mask": attention_mask,
479
+ "pixel_values": pixel_values,
480
+ "past_key_values": past_key_values,
481
+ "use_cache": kwargs.get("use_cache"),
482
+ }
483
+ )
484
+
485
+ return model_inputs
486
+
487
+ # Defer to Language Model (all handle this differently, with different return types)
488
+ def _reorder_cache(self, *args, **kwargs) -> Any:
489
+ return self.language_model._reorder_cache(*args, **kwargs)
490
+
491
+
492
+ class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
493
+ config_class: PretrainedConfig = OpenVLAConfig
494
+
495
+ def __init__(self, config: OpenVLAConfig) -> None:
496
+ super().__init__(config)
497
+ self.norm_stats = config.norm_stats
498
+
499
+ # Compute action bins
500
+ self.bins = np.linspace(-1, 1, config.n_action_bins)
501
+ self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
502
+
503
+ # Compute vocab size for de-tokenization -- revert added "multiple of"
504
+ self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of
505
+
506
+ def predict_action(
507
+ self, input_ids: Optional[torch.LongTensor] = None, unnorm_key: Optional[str] = None, **kwargs
508
+ ) -> np.ndarray:
509
+ """Thin wrapper around .generate() that decodes predicted actions and unnormalizes them."""
510
+ # We need to add this special empty token ('') after the colon (':') token in "ASSISTANT:"
511
+ # in order for the predictions to match the training configuration and be accurate.
512
+ input_ids = torch.cat(
513
+ (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
514
+ )
515
+ # Run VLA inference
516
+ outputs = self.generate(
517
+ input_ids,
518
+ max_new_tokens=self.get_action_dim(unnorm_key),
519
+ output_scores=True,
520
+ return_dict_in_generate=True,
521
+ **kwargs
522
+ )
523
+
524
+
525
+ generated_ids = outputs.sequences
526
+ scores = outputs.scores
527
+ log_probs = []
528
+ for i, score in enumerate(scores):
529
+ # softmax to get probabilities
530
+ probs = torch.nn.functional.softmax(score, dim=-1)
531
+ # take log to get log probabilities
532
+ log_prob = torch.log(probs)
533
+ # get the log probability of the generated token
534
+ token_log_prob = log_prob[0, generated_ids[0, len(input_ids[0]) + i]].item()
535
+ log_probs.append(token_log_prob)
536
+
537
+
538
+ total_log_prob = sum(log_probs)
539
+ overall_probability = np.exp(total_log_prob)
540
+
541
+ #print("Overall probability:", overall_probability)
542
+ self.p=overall_probability
543
+ #generated_ids = self.generate(input_ids, max_new_tokens=self.get_action_dim(unnorm_key), **kwargs, )
544
+ # Extract predicted action tokens and translate into (normalized) continuous actions
545
+ predicted_action_token_ids = generated_ids[0, -self.get_action_dim(unnorm_key) :].cpu().numpy()
546
+ discretized_actions = self.vocab_size - predicted_action_token_ids
547
+ discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
548
+ normalized_actions = self.bin_centers[discretized_actions]
549
+ # Unnormalize actions
550
+ action_norm_stats = self.get_action_stats(unnorm_key)
551
+ mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
552
+ action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
553
+ actions = np.where(
554
+ mask,
555
+ 0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
556
+ normalized_actions,
557
+ )
558
+ return actions
559
+ @staticmethod
560
+ def _check_unnorm_key(norm_stats, unnorm_key):
561
+ if unnorm_key is None:
562
+ assert len(norm_stats) == 1, (
563
+ f"Your model was trained on more than one dataset, "
564
+ f"please pass a `unnorm_key` from the following options to choose the statistics "
565
+ f"used for un-normalizing actions: {norm_stats.keys()}"
566
+ )
567
+ unnorm_key = next(iter(norm_stats.keys()))
568
+
569
+ assert unnorm_key in norm_stats, (
570
+ f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
571
+ f"please choose from: {norm_stats.keys()}"
572
+ )
573
+ return unnorm_key
574
+
575
+ def get_action_dim(self, unnorm_key=None):
576
+ """Dimensionality of the policy's action space."""
577
+ unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
578
+ return len(self.norm_stats[unnorm_key]["action"]["q01"])
579
+
580
+ def get_action_stats(self, unnorm_key=None):
581
+ """Dimensionality of the policy's action space."""
582
+ unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
583
+ return self.norm_stats[unnorm_key]["action"]
preprocessor_config.json ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "processing_prismatic.PrismaticImageProcessor",
4
+ "AutoProcessor": "processing_prismatic.PrismaticProcessor"
5
+ },
6
+ "image_processor_type": "PrismaticImageProcessor",
7
+ "image_resize_strategy": "resize-naive",
8
+ "input_sizes": [
9
+ [
10
+ 3,
11
+ 224,
12
+ 224
13
+ ],
14
+ [
15
+ 3,
16
+ 224,
17
+ 224
18
+ ]
19
+ ],
20
+ "interpolations": [
21
+ "bicubic",
22
+ "bicubic"
23
+ ],
24
+ "means": [
25
+ [
26
+ 0.485,
27
+ 0.456,
28
+ 0.406
29
+ ],
30
+ [
31
+ 0.5,
32
+ 0.5,
33
+ 0.5
34
+ ]
35
+ ],
36
+ "processor_class": "PrismaticProcessor",
37
+ "stds": [
38
+ [
39
+ 0.229,
40
+ 0.224,
41
+ 0.225
42
+ ],
43
+ [
44
+ 0.5,
45
+ 0.5,
46
+ 0.5
47
+ ]
48
+ ],
49
+ "tvf_crop_params": [
50
+ {
51
+ "output_size": [
52
+ 224,
53
+ 224
54
+ ]
55
+ },
56
+ {
57
+ "output_size": [
58
+ 224,
59
+ 224
60
+ ]
61
+ }
62
+ ],
63
+ "tvf_do_letterbox": false,
64
+ "tvf_letterbox_fill": null,
65
+ "tvf_normalize_params": [
66
+ {
67
+ "inplace": false,
68
+ "mean": [
69
+ 0.484375,
70
+ 0.455078125,
71
+ 0.40625
72
+ ],
73
+ "std": [
74
+ 0.228515625,
75
+ 0.2236328125,
76
+ 0.224609375
77
+ ]
78
+ },
79
+ {
80
+ "inplace": false,
81
+ "mean": [
82
+ 0.5,
83
+ 0.5,
84
+ 0.5
85
+ ],
86
+ "std": [
87
+ 0.5,
88
+ 0.5,
89
+ 0.5
90
+ ]
91
+ }
92
+ ],
93
+ "tvf_resize_params": [
94
+ {
95
+ "antialias": true,
96
+ "interpolation": 3,
97
+ "max_size": null,
98
+ "size": [
99
+ 224,
100
+ 224
101
+ ]
102
+ },
103
+ {
104
+ "antialias": true,
105
+ "interpolation": 3,
106
+ "max_size": null,
107
+ "size": [
108
+ 224,
109
+ 224
110
+ ]
111
+ }
112
+ ],
113
+ "use_fused_vision_backbone": true
114
+ }
processing_prismatic.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ processing_prismatic.py
3
+
4
+ HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration
5
+ specifies `siglip-224px+7b`.
6
+ """
7
+
8
+ from typing import Any, ClassVar, List, Optional, Tuple, Union
9
+
10
+ import timm.data
11
+ import torch
12
+ import torchvision.transforms.functional as TVF
13
+ from PIL import Image
14
+ from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
15
+ from transformers import PreTrainedTokenizerBase
16
+ from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin
17
+ from transformers.processing_utils import ProcessorMixin
18
+ from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
19
+ from transformers.utils import TensorType
20
+
21
+
22
+ # === Image Processing ===
23
+ def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image:
24
+ """Given a PIL.Image, pad to square by adding a symmetric border around the height/width."""
25
+ (w, h), max_wh = image.size, max(image.size)
26
+ horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2)
27
+ padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad)
28
+
29
+ return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant")
30
+
31
+
32
+ class PrismaticImageProcessor(ImageProcessingMixin):
33
+ model_input_names: ClassVar[List[str]] = ["pixel_values"]
34
+
35
+ def __init__(
36
+ self,
37
+ use_fused_vision_backbone: bool = False,
38
+ image_resize_strategy: str = "letterbox",
39
+ input_sizes: Optional[List[Tuple[int, int, int]]] = None,
40
+ interpolations: Optional[List[str]] = None,
41
+ means: Optional[List[Tuple[float, float, float]]] = None,
42
+ stds: Optional[List[Tuple[float, float, float]]] = None,
43
+ **kwargs: str,
44
+ ) -> None:
45
+ """
46
+ Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be
47
+ created by TIMM, and edited to follow our custom `image_resize_strategy` logic.
48
+
49
+ @param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone
50
+ @param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox >
51
+ @param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height)
52
+ @param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic")
53
+ @param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`)
54
+ @param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`)
55
+ """
56
+ self.use_fused_vision_backbone = use_fused_vision_backbone
57
+ self.image_resize_strategy = image_resize_strategy
58
+
59
+ # Handle `None` default values
60
+ input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes
61
+ means = [(0.5, 0.5, 0.5)] if means is None else means
62
+ stds = [(0.5, 0.5, 0.5)] if stds is None else stds
63
+
64
+ # TIMM `data_cfg` Parameters
65
+ self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds
66
+
67
+ # Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values!
68
+ self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], []
69
+ self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
70
+
71
+ for idx in range(len(input_sizes)):
72
+ transform = timm.data.create_transform(
73
+ input_size=self.input_sizes[idx],
74
+ interpolation=self.interpolations[idx],
75
+ mean=self.means[idx],
76
+ std=self.stds[idx],
77
+ crop_pct=1.0, # Set to 1.0 to ignore cropping (initial Resize sets `input_size`)
78
+ crop_mode="center", # Default crop mode -- no-op when `crop_pct == 1.0`
79
+ is_training=False, # No image augmentations when loading the transform!
80
+ )
81
+
82
+ # [Validation] Ensure appropriate transform structure, expected sizes
83
+ if not (
84
+ isinstance(transform, Compose)
85
+ and (len(transform.transforms) == 4)
86
+ and isinstance(transform.transforms[0], Resize)
87
+ and isinstance(transform.transforms[1], CenterCrop)
88
+ and isinstance(transform.transforms[2], ToTensor)
89
+ and isinstance(transform.transforms[3], Normalize)
90
+ and (transform.transforms[0].size == self.input_sizes[idx][-1])
91
+ and (transform.transforms[1].size == self.input_sizes[idx][-2:])
92
+ ):
93
+ raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`")
94
+
95
+ # HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute.
96
+ # => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`)
97
+ resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3]
98
+ self.tvf_resize_params.append(
99
+ {
100
+ "size": resize_t.size,
101
+ "interpolation": TVF.pil_modes_mapping[resize_t.interpolation],
102
+ "max_size": None,
103
+ "antialias": True,
104
+ }
105
+ )
106
+ self.tvf_crop_params.append({"output_size": crop_t.size})
107
+ self.tvf_normalize_params.append(
108
+ {
109
+ "mean": norm_t.mean.float().numpy().tolist(),
110
+ "std": norm_t.std.float().numpy().tolist(),
111
+ "inplace": False,
112
+ }
113
+ )
114
+ self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
115
+
116
+ # Handle Prismatic `image_resize_strategy`
117
+ if self.image_resize_strategy == "resize-naive":
118
+ self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size)
119
+ elif self.image_resize_strategy == "letterbox":
120
+ self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]])
121
+ elif self.image_resize_strategy == "resize-crop":
122
+ pass
123
+ else:
124
+ raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!")
125
+
126
+ # Dispatch **kwargs to super()
127
+ super().__init__(**kwargs)
128
+
129
+ def apply_transform(self, img: Image.Image) -> torch.Tensor:
130
+ """Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])"""
131
+ if self.tvf_do_letterbox:
132
+ img = letterbox_pad_transform(img, self.tvf_letterbox_fill)
133
+
134
+ # [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side!
135
+ imgs_t = []
136
+ for idx in range(len(self.input_sizes)):
137
+ img_idx = TVF.resize(img, **self.tvf_resize_params[idx])
138
+ img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx])
139
+ img_idx_t = TVF.to_tensor(img_idx)
140
+ img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx])
141
+ imgs_t.append(img_idx_t)
142
+
143
+ # [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0
144
+ img_t = torch.vstack(imgs_t)
145
+
146
+ return img_t
147
+
148
+ def preprocess(
149
+ self,
150
+ images: Union[Image.Image, List[Image.Image]],
151
+ return_tensors: Optional[Union[str, TensorType]] = None,
152
+ **_: str,
153
+ ) -> BatchFeature:
154
+ """
155
+ Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we
156
+ explicitly only handle PIL.Image.Image instances for simplicity.
157
+
158
+ @param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
159
+ @param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray
160
+
161
+ @return: Instance of `transformers :: BatchFeature` with a single key "pixel_values"
162
+ """
163
+ if not isinstance(images, list):
164
+ images = [images]
165
+
166
+ # Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor
167
+ pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images])
168
+
169
+ # Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert
170
+ return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors)
171
+
172
+ def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature:
173
+ return self.preprocess(images, **kwargs)
174
+
175
+
176
+ # === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer ===
177
+ # =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py
178
+ class PrismaticProcessor(ProcessorMixin):
179
+ attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"]
180
+ image_processor_class: str = "AutoImageProcessor"
181
+ tokenizer_class: str = "AutoTokenizer"
182
+
183
+ def __init__(
184
+ self,
185
+ image_processor: Optional[ImageProcessingMixin] = None,
186
+ tokenizer: Optional[PreTrainedTokenizerBase] = None,
187
+ ) -> None:
188
+ super().__init__(image_processor, tokenizer)
189
+
190
+ def __call__(
191
+ self,
192
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
193
+ images: Union[Image.Image, List[Image.Image]],
194
+ padding: Union[bool, str, PaddingStrategy] = False,
195
+ truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
196
+ max_length: Optional[int] = None,
197
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
198
+ ) -> BatchFeature:
199
+ """
200
+ Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer,
201
+ forwards images to PrismaticImageProcessor.
202
+
203
+ @param text: The (batch) of text to encode; must be a string or list of strings.
204
+ @param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
205
+ @param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False >
206
+ @param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified
207
+ @param max_length: Maximum length (in tokens) to truncate
208
+ @param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH)
209
+
210
+ @return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`.
211
+ """
212
+ pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
213
+ text_inputs = self.tokenizer(
214
+ text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
215
+ )
216
+
217
+ # [Validate] Need same number of images and text inputs!
218
+ if pixel_values.shape[0] != text_inputs.input_ids.shape[0]:
219
+ raise ValueError("Batch is malformed; expected same number of images and text inputs!")
220
+
221
+ return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
222
+
223
+ # === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation ===
224
+ def batch_decode(
225
+ self,
226
+ sequences: Union[List[int], List[List[int]], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
227
+ skip_special_tokens: bool = False,
228
+ clean_up_tokenization_spaces: Optional[bool] = None,
229
+ **kwargs: str,
230
+ ) -> List[str]:
231
+ return self.tokenizer.batch_decode(
232
+ sequences=sequences,
233
+ skip_special_tokens=skip_special_tokens,
234
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
235
+ **kwargs,
236
+ )
237
+
238
+ def decode(
239
+ self,
240
+ token_ids: Union[int, List[int], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
241
+ skip_special_tokens: bool = False,
242
+ clean_up_tokenization_spaces: Optional[bool] = None,
243
+ **kwargs: str,
244
+ ) -> str:
245
+ return self.tokenizer.decode(
246
+ token_ids=token_ids,
247
+ skip_special_tokens=skip_special_tokens,
248
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
249
+ **kwargs,
250
+ )
251
+
252
+ @property
253
+ def model_input_names(self) -> List[str]:
254
+ tokenizer_input_names = self.tokenizer.model_input_names
255
+ image_processor_input_names = self.image_processor.model_input_names
256
+
257
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_prismatic.PrismaticProcessor"
4
+ },
5
+ "processor_class": "PrismaticProcessor"
6
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<PAD>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<PAD>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "auto_map": {
39
+ "AutoProcessor": "processing_prismatic.PrismaticProcessor"
40
+ },
41
+ "bos_token": "<s>",
42
+ "clean_up_tokenization_spaces": false,
43
+ "do_image_splitting": false,
44
+ "eos_token": "</s>",
45
+ "legacy": false,
46
+ "model_max_length": 2048,
47
+ "pad_token": "<PAD>",
48
+ "padding_side": "right",
49
+ "processor_class": "PrismaticProcessor",
50
+ "sp_model_kwargs": {},
51
+ "tokenizer_class": "LlamaTokenizer",
52
+ "unk_token": "<unk>",
53
+ "use_default_system_prompt": false
54
+ }