File size: 8,674 Bytes
9a0f6e3
 
 
8555086
 
 
 
 
 
9f6186c
 
 
 
8555086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
license: apache-2.0
---
# SlimSAM: 0.1% Data Makes Segment Anything Slim
<div align="center">
<img src="images/paper/intro.PNG" width="66%">
<img src="images/paper/everything.PNG" width="100%">
</div>

> **0.1% Data Makes Segment Anything Slim**   
> [Zigeng Chen](https://github.com/czg1225), [Gongfan Fang](https://fangggf.github.io/), [Xinyin Ma](https://horseee.github.io/), [Xinchao Wang](https://sites.google.com/site/sitexinchaowang/)   
> [Learning and Vision Lab](http://lv-nus.org/), National University of Singapore  
> Paper: [[Arxiv]](https://arxiv.org/abs/2312.05284)

### Updates
* 🚀 **December 11, 2023**: Release the training code, inference code and pre-trained models for **SlimSAM**. 

## Introduction

<div align="center">
<img src="images/paper/process.PNG" width="100%">
</div>

**SlimSAM** is a novel SAM compression method, which efficiently reuses pre-trained SAMs without the necessity for extensive retraining. This is achieved by the efficient reuse of pre-trained SAMs through a unified pruning-distillation framework. To enhance knowledge inheritance from the original SAM, we employ an innovative alternate slimming strategy that partitions the compression process into a progressive procedure. Diverging from prior pruning techniques, we meticulously prune and distill decoupled model structures in an alternating fashion. Furthermore, a novel label-free pruning criterion is also proposed to align the pruning objective with the optimization target, thereby boosting the post-distillation after pruning.

![Frame](images/paper/frame.PNG?raw=true)

SlimSAM achieves approaching performance while reducing the parameter counts to **0.9\% (5.7M)**, MACs to **0.8\% (21G)**, and requiring mere **0.1\% (10k)** of the training data when compared to the original SAM-H. Extensive experiments demonstrate that our method realize significant superior performance while utilizing over **10 times** less training data when compared to other SAM compression methods.

## Visualization Results

Qualitative comparison of results obtained using point prompts, box prompts, and segment everything prompts are shown in the following section.

### Segment Everything Prompts
<div align="center">
  <img src="images/paper/everything2.PNG" width="100%">
</div>

### Box Prompts and Point Prompts
<div align="center">
  <img src="images/paper/prompt.PNG" width="100%">
</div>


## Quantitative Results

We conducted a comprehensive comparison encompassing performance, efficiency, and training costs with other SAM compression methods and structural pruning methods.

### Comparing with other SAM compression methods.
<div align="center">
  <img src="images/paper/compare_tab1.PNG" width="100%">
</div>

### Comparing with other structural pruning methods.
<div align="center">
  <img src="images/paper/compare_tab2.PNG" width="50%">
</div>

## Installation

The code requires `python>=3.8`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.


Install with

```
pip install -e .
```

The following optional dependencies are necessary for mask post-processing, saving masks in COCO format.

```
pip install opencv-python pycocotools matplotlib 
```

## Dataset
We use the original SA-1B dataset in our code. See [here](https://ai.facebook.com/datasets/segment-anything/) for an overview of the datastet. The dataset can be downloaded [here](https://ai.facebook.com/datasets/segment-anything-downloads/).

The download dataset should be saved as:

```
<train_data_root>/
      sa_xxxxxxx.jpg
      sa_xxxxxxx.json
      ......
<val_data_root>/
      sa_xxxxxxx.jpg
      sa_xxxxxxx.json
      ......

```


To decode a mask in COCO RLE format into binary:

```
from pycocotools import mask as mask_utils
mask = mask_utils.decode(annotation["segmentation"])
```

See [here](https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py) for more instructions to manipulate masks stored in RLE format.


## <a name="Models"></a>Model Checkpoints

The base model of our method is available. To enhance collaboration with our dependency dectection algorithm, we have split the original image encoder's qkv layer into three distinct linear layers: q, k, and v.
<div align="center">
<img src="images/paper/split.PNG" width="70%">
</div>



Click the links below to download the checkpoints of orginal SAM-B.

- `SAM-B`: [SAM-B model.](https://drive.google.com/file/d/1CtcyOm4h9bXgBF8DEVWn3N7g9-3r4Xzz/view?usp=sharing)

The check points of our SlimSAM are avalable. We release two versions, which are SlimSAM-50 (pruning ratio = 50%) and SlimSAM-77 (pruning ratio = 77%).

Click the links below to download the checkpoints for the corresponding pruning ratio.

- `SlimSAM-50`: [SlimSAM-50 model.](https://drive.google.com/file/d/1iCN9IW0Su0Ud_fOFoQUnTdkC3bFveMND/view?usp=sharing)
- `SlimSAM-77`: [SlimSAM-77 model.](https://drive.google.com/file/d/1L7LB6gHDzR-3D63pH9acD9E0Ul9_wMF-/view)


These models can be instantiated by running

```
import torch
SlimSAM_model = torch.load(<model_path>)
SlimSAM_model.image_encoder = SlimSAM_model.image_encoder.module

def forward(self, x):

    x = self.patch_embed(x)
    if self.pos_embed is not None:
        x = x + self.pos_embed

    for blk in self.blocks:
        x,qkv_emb,mid_emb,x_emb = blk(x)

    x = self.neck(x.permute(0, 3, 1, 2))
    
    return x

import types
funcType = types.MethodType
SlimSAM_model.image_encoder.forward = funcType(forward, SlimSAM_model.image_encoder)
```


## <a name="Inference"></a>Inference

First download [SlimSAM-50 model](https://drive.google.com/file/d/1iCN9IW0Su0Ud_fOFoQUnTdkC3bFveMND/view?usp=sharing) or  [SlimSAM-77 model](https://drive.google.com/file/d/1L7LB6gHDzR-3D63pH9acD9E0Ul9_wMF-/view) for inference


We provide detailed instructions in 'inference.py' on how to use a range of prompts, including 'point' and 'box' and 'everything', for inference purposes.

```
CUDA_VISIBLE_DEVICES=0 python inference.py
```

## <a name="Train"></a>Train

First download a [SAM-B model](https://drive.google.com/file/d/1CtcyOm4h9bXgBF8DEVWn3N7g9-3r4Xzz/view?usp=sharing) into 'checkpoints/' as the base model. 

### Step1: Embedding Pruning + Bottleneck Aligning ###
The model after step1 is saved as 'checkpoints/vit_b_slim_step1_.pth'

```
CUDA_VISIBLE_DEVICES=0 python prune_distill_step1.py  --traindata_path <train_data_root> --valdata_path <val_data_root> --prune_ratio <pruning ratio> --epochs <training epochs>
```

### Step2: Bottleneck Pruning + Embedding Aligning ###
The model after step2 is saved as 'checkpoints/vit_b_slim_step2_.pth'

```
CUDA_VISIBLE_DEVICES=0 python prune_distill_step2.py  --traindata_path <train_data_root> --valdata_path <val_data_root> --prune_ratio <pruning ratio> --epochs <training epochs> --model_path 'checkpoints/vit_b_slim_step1_.pth' 

```

You can adjust the training settings to meet your specific requirements. While our method demonstrates impressive performance with just 10,000 training data, incorporating additional training data will further enhance the model's effectiveness

## BibTex of our SlimSAM
If you use SlimSAM in your research, please use the following BibTeX entry. Thank you!

```bibtex
@misc{chen202301,
      title={0.1% Data Makes Segment Anything Slim}, 
      author={Zigeng Chen and Gongfan Fang and Xinyin Ma and Xinchao Wang},
      year={2023},
      eprint={2312.05284},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

## Acknowledgement

<details>
<summary>
<a href="https://github.com/facebookresearch/segment-anything">SAM</a> (Segment Anything) [<b>bib</b>]
</summary>

```bibtex
@article{kirillov2023segany,
  title={Segment Anything}, 
  author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
  journal={arXiv:2304.02643},
  year={2023}
}
```
</details>



<details>
<summary>
<a href="https://github.com/VainF/Torch-Pruning">Torch Pruning</a> (DepGraph: Towards Any Structural Pruning) [<b>bib</b>]
</summary>

```bibtex
@inproceedings{fang2023depgraph,
  title={Depgraph: Towards any structural pruning},
  author={Fang, Gongfan and Ma, Xinyin and Song, Mingli and Mi, Michael Bi and Wang, Xinchao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={16091--16101},
  year={2023}
}
```
</details>