File size: 7,607 Bytes
2e7e617 0c943ae 2e7e617 0c943ae 2e7e617 71d7a4f 0c943ae 2e7e617 71d7a4f 2e7e617 71d7a4f 2e7e617 71d7a4f 2e7e617 71d7a4f 23992e1 71d7a4f 23992e1 71d7a4f 2e7e617 0c943ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
language:
- en
- zh
license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
- Locutusque/StockQwen-2.5-7B
- allknowingroger/QwenSlerp8-7B
base_model:
- allknowingroger/QwenSlerp8-7B
- Locutusque/StockQwen-2.5-7B
model-index:
- name: Qwen-2.5-Aether-SlerpFusion-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 62.62
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 36.01
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 24.17
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.49
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.29
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 36.96
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B
name: Open LLM Leaderboard
---
# ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B
**Qwen-2.5-Aether-SlerpFusion-7B** is a sophisticated model merge that combines the strengths of multiple pre-trained language models using the powerful [mergekit](https://github.com/ZeroXClem/mergekit) framework. This fusion leverages spherical linear interpolation (SLERP) to seamlessly blend architectural layers, resulting in a model that benefits from enhanced performance and versatility.
## 🚀 Merged Models
This model merge incorporates the following:
- [**Locutusque/StockQwen-2.5-7B**](https://huggingface.co/Locutusque/StockQwen-2.5-7B): Serves as the foundational model, renowned for its robust language understanding and generation capabilities.
- [**allknowingroger/QwenSlerp8-7B**](https://huggingface.co/allknowingroger/QwenSlerp8-7B): Contributes advanced task-specific fine-tuning, enhancing the model's adaptability across various applications.
## 🧩 Merge Configuration
The configuration below outlines how the models are merged using **spherical linear interpolation (SLERP)**. This method ensures smooth transitions between the layers of both models, facilitating an optimal blend of their unique attributes:
```yaml
# ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B Merge Configuration
slices:
- sources:
- model: Locutusque/StockQwen-2.5-7B
layer_range: [0, 28]
- model: allknowingroger/QwenSlerp8-7B
layer_range: [0, 28]
merge_method: slerp
base_model: Locutusque/StockQwen-2.5-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
### 🔑 Key Parameters
- **Self-Attention Filtering** (`self_attn`): Controls the blending extent across self-attention layers, allowing for a dynamic mix between the two source models.
- **MLP Filtering** (`mlp`): Adjusts the balance within the Multi-Layer Perceptrons, fine-tuning the model’s neural network layers for optimal performance.
- **Global Weight (`t.value`)**: Sets a general interpolation factor for all unspecified layers, ensuring an equal contribution from both models.
- **Data Type (`dtype`)**: Utilizes `bfloat16` to maintain computational efficiency while preserving high precision.
### 🗣️ Inference
Below is an example of how to load and use the model for text generation:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
# Define the model name
model_name = "ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B"
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load the model
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Initialize the pipeline
text_generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Define the input prompt
prompt = "Explain the significance of artificial intelligence in modern healthcare."
# Generate the output
outputs = text_generator(
prompt,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
# Print the generated text
print(outputs[0]["generated_text"])
```
## 🎯 Use Case & Applications
**Qwen-2.5-Aether-SlerpFusion-7B** excels in scenarios that require both robust language understanding and specialized task performance. This merged model is ideal for:
- **Advanced Text Generation and Comprehension**: Crafting coherent, contextually accurate, and nuanced text for applications like content creation, summarization, and translation.
- **Domain-Specific Tasks**: Enhancing performance in specialized areas such as legal document analysis, medical information processing, and technical support.
- **Interactive AI Systems**: Powering conversational agents and chatbots that require both general language capabilities and task-specific expertise.
## 📜 License
This model is open-sourced under the **Apache-2.0 License**.
## 💡 Tags
- `merge`
- `mergekit`
- `slerp`
- `Qwen`
- `Locutusque/StockQwen-2.5-7B`
- `allknowingroger/QwenSlerp8-7B`
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ZeroXClem__Qwen-2.5-Aether-SlerpFusion-7B)
| Metric |Value|
|-------------------|----:|
|Avg. |29.59|
|IFEval (0-Shot) |62.62|
|BBH (3-Shot) |36.01|
|MATH Lvl 5 (4-Shot)|24.17|
|GPQA (0-shot) | 6.49|
|MuSR (0-shot) |11.29|
|MMLU-PRO (5-shot) |36.96|
|