ZeroWw commited on
Commit
76d5779
·
verified ·
1 Parent(s): 9338694

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Llama-Deepsync-1B.f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Llama-Deepsync-1B.q5_k.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Llama-Deepsync-1B.q6_k.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Llama-Deepsync-1B.q8_0.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Llama-Deepsync-1B.q8_p.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Llama-Deepsync-1B.q8q4.gguf filter=lfs diff=lfs merge=lfs -text
Llama-Deepsync-1B.f16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8723e4fad1b39540dd753bfbd41b589c9f1b4352d7826538d4b6ece7a36870a9
3
+ size 2479596544
Llama-Deepsync-1B.q5_k.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:718d5b6245d61b3624a01f2cd71b21505fd0c374bc27dbecc0ef227ef071d8a2
3
+ size 1221370880
Llama-Deepsync-1B.q6_k.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:941d041fcfa7f7243b7ca19d4b03c4ca22ece940cbfed89c92d95980e01b35ae
3
+ size 1331667968
Llama-Deepsync-1B.q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be801d6e933345480c9524a8dba525672a2a0dba34c315daa285d440fd140ede
3
+ size 1567335424
Llama-Deepsync-1B.q8_p.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3b46d755b36c6bda1059f851b080fdf63362c7bf5861e46f10f25a55ba6c880
3
+ size 1321083904
Llama-Deepsync-1B.q8q4.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8fb008c3a0262a705c42aba4e2fdf359d287961517b87ac7aa1648d34863866
3
+ size 871310336
Llama-Deepsync-1B/README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ language:
4
+ - en
5
+ - de
6
+ - fr
7
+ - it
8
+ - pt
9
+ - hi
10
+ - es
11
+ - th
12
+ base_model:
13
+ - meta-llama/Llama-3.2-1B-Instruct
14
+ pipeline_tag: text-generation
15
+ tags:
16
+ - text-generation-inference
17
+ - Llama
18
+ - Code
19
+ - CoT
20
+ - Math
21
+ - Deepsync
22
+ - 3b
23
+ library_name: transformers
24
+ ---
25
+ <pre align="center">
26
+ .___ _______.
27
+ __| _/____ ____ ______ _________.__. ____ ____ /_ \_ |__
28
+ / __ |/ __ \_/ __ \\____ \/ ___< | |/ \_/ ___\ | || __ \
29
+ / /_/ \ ___/\ ___/| |_> >___ \ \___ | | \ \___ | || \_\ \
30
+ \____ |\___ >\___ > __/____ >/ ____|___| /\___ > |___||___ /
31
+ \/ \/ \/|__| \/ \/ \/ \/ \/
32
+ </pre>
33
+
34
+ The **Llama-Deepsync-1B** is a fine-tuned version of the **Llama-3.2-1B-Instruct** base model, designed for text generation tasks that require deep reasoning, logical structuring, and problem-solving. This model leverages its optimized architecture to provide accurate and contextually relevant outputs for complex queries, making it ideal for applications in education, programming, and creative writing.
35
+
36
+ With its robust natural language processing capabilities, **Llama-Deepsync-1B** excels in generating step-by-step solutions, creative content, and logical analyses. Its architecture integrates advanced understanding of both structured and unstructured data, ensuring precise text generation aligned with user inputs.
37
+
38
+ - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
39
+ - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
40
+ - **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
41
+ - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
42
+
43
+ # **Model Architecture**
44
+
45
+ Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
46
+
47
+ # **Use with transformers**
48
+
49
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
50
+
51
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
52
+
53
+ ```python
54
+ import torch
55
+ from transformers import pipeline
56
+
57
+ model_id = "prithivMLmods/Llama-Deepsync-1B"
58
+ pipe = pipeline(
59
+ "text-generation",
60
+ model=model_id,
61
+ torch_dtype=torch.bfloat16,
62
+ device_map="auto",
63
+ )
64
+ messages = [
65
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
66
+ {"role": "user", "content": "Who are you?"},
67
+ ]
68
+ outputs = pipe(
69
+ messages,
70
+ max_new_tokens=256,
71
+ )
72
+ print(outputs[0]["generated_text"][-1])
73
+ ```
74
+
75
+ Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
76
+
77
+ # **Run with Ollama [Ollama Run]**
78
+
79
+ Ollama makes running machine learning models simple and efficient. Follow these steps to set up and run your GGUF models quickly.
80
+
81
+ ## Quick Start: Step-by-Step Guide
82
+
83
+ | Step | Description | Command / Instructions |
84
+ |------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
85
+ | 1 | **Install Ollama 🦙** | Download Ollama from [https://ollama.com/download](https://ollama.com/download) and install it on your system. |
86
+ | 2 | **Create Your Model File** | - Create a file named after your model, e.g., `metallama`. |
87
+ | | | - Add the following line to specify the base model: |
88
+ | | | ```bash |
89
+ | | | FROM Llama-3.2-1B.F16.gguf |
90
+ | | | ``` |
91
+ | | | - Ensure the base model file is in the same directory. |
92
+ | 3 | **Create and Patch the Model** | Run the following commands to create and verify your model: |
93
+ | | | ```bash |
94
+ | | | ollama create metallama -f ./metallama |
95
+ | | | ollama list |
96
+ | | | ``` |
97
+ | 4 | **Run the Model** | Use the following command to start your model: |
98
+ | | | ```bash |
99
+ | | | ollama run metallama |
100
+ | | | ``` |
101
+ | 5 | **Interact with the Model** | Once the model is running, interact with it: |
102
+ | | | ```plaintext |
103
+ | | | >>> Tell me about Space X. |
104
+ | | | Space X, the private aerospace company founded by Elon Musk, is revolutionizing space exploration... |
105
+ | | | ``` |
106
+
107
+ ## Conclusion
108
+ With Ollama, running and interacting with models is seamless. Start experimenting today!
README.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: mit
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ ---
8
+
9
+ My own (ZeroWw) quantizations.
10
+ output and embed tensors quantized to f16.
11
+ all other tensors quantized to q5_k or q6_k.
12
+
13
+ Result:
14
+ both f16.q6 and f16.q5 are smaller than q8_0 standard quantization
15
+ and they perform as well as the pure f16.
16
+
17
+ Updated on: Tue Jan 14, 14:11:53