|
import numpy as np |
|
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, average_precision_score |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
|
|
def evaluate_metrics(labels, probs, target_cols, threshold=0.5): |
|
""" |
|
Evaluate metrics for each label |
|
|
|
Parameters: |
|
----------- |
|
labels : numpy.ndarray |
|
Ground truth labels (0 or 1) |
|
probs : numpy.ndarray |
|
Prediction probabilities |
|
target_cols : list |
|
List of target disease names |
|
threshold : float |
|
Threshold for converting probabilities to binary predictions |
|
|
|
Returns: |
|
-------- |
|
pandas.DataFrame |
|
Metrics for each label |
|
""" |
|
|
|
preds = (probs >= threshold).astype(int) |
|
|
|
|
|
metrics_dict = { |
|
'Disease': target_cols, |
|
'Positive_Samples': [], |
|
'Accuracy': [], |
|
'Precision': [], |
|
'Recall': [], |
|
'F1': [], |
|
'AUC-ROC': [], |
|
'AP': [] |
|
} |
|
|
|
|
|
for i in range(len(target_cols)): |
|
metrics_dict['Positive_Samples'].append(np.sum(labels[:, i])) |
|
metrics_dict['Accuracy'].append(accuracy_score(labels[:, i], preds[:, i])) |
|
metrics_dict['Precision'].append(precision_score(labels[:, i], preds[:, i], zero_division=0)) |
|
metrics_dict['Recall'].append(recall_score(labels[:, i], preds[:, i], zero_division=0)) |
|
metrics_dict['F1'].append(f1_score(labels[:, i], preds[:, i], zero_division=0)) |
|
metrics_dict['AUC-ROC'].append(roc_auc_score(labels[:, i], probs[:, i])) |
|
metrics_dict['AP'].append(average_precision_score(labels[:, i], probs[:, i])) |
|
|
|
|
|
metrics_df = pd.DataFrame(metrics_dict) |
|
|
|
|
|
numeric_cols = ['Accuracy', 'Precision', 'Recall', 'F1', 'AUC-ROC', 'AP'] |
|
metrics_df[numeric_cols] = metrics_df[numeric_cols].round(3) |
|
|
|
return metrics_df |
|
|
|
def plot_metrics_heatmap(metrics_df, metric_cols=['Precision', 'Recall', 'F1', 'AUC-ROC', 'AP']): |
|
""" |
|
Plot a heatmap of evaluation metrics |
|
|
|
Parameters: |
|
----------- |
|
metrics_df : pandas.DataFrame |
|
Output from evaluate_metrics function |
|
metric_cols : list |
|
Metrics to display in the heatmap |
|
""" |
|
plt.figure(figsize=(12, len(target_cols)//2)) |
|
|
|
|
|
heatmap_data = metrics_df[metric_cols].values |
|
|
|
|
|
sns.heatmap(heatmap_data, |
|
annot=True, |
|
fmt='.3f', |
|
cmap='YlOrRd', |
|
xticklabels=metric_cols, |
|
yticklabels=metrics_df['Disease'], |
|
vmin=0, |
|
vmax=1) |
|
|
|
plt.title('Evaluation Metrics Heatmap') |
|
plt.tight_layout() |
|
plt.show() |