--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - audiofolder model-index: - name: stt-audioPt-bambara-french_25 results: [] --- # stt-audioPt-bambara-french_25 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 3.9044 | 66.6780 | 1000 | 0.5086 | | 3.297 | 133.3390 | 2000 | 0.4898 | | 3.1553 | 200.0 | 3000 | 0.4952 | | 3.0935 | 266.6780 | 4000 | 0.4970 | | 2.9243 | 333.3390 | 5000 | 0.5058 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0