--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8411 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1621 | 1.0 | 113 | 2.0327 | 0.47 | | 1.4984 | 2.0 | 226 | 1.3717 | 0.69 | | 1.0376 | 3.0 | 339 | 1.0219 | 0.74 | | 0.8447 | 4.0 | 452 | 0.8923 | 0.76 | | 0.632 | 5.0 | 565 | 0.5939 | 0.79 | | 0.3592 | 6.0 | 678 | 0.6146 | 0.83 | | 0.408 | 7.0 | 791 | 0.4208 | 0.9 | | 0.0661 | 8.0 | 904 | 0.4568 | 0.88 | | 0.1336 | 9.0 | 1017 | 0.5712 | 0.86 | | 0.062 | 10.0 | 1130 | 0.6705 | 0.84 | | 0.0069 | 11.0 | 1243 | 0.6850 | 0.85 | | 0.1683 | 12.0 | 1356 | 0.6070 | 0.87 | | 0.0044 | 13.0 | 1469 | 0.8509 | 0.85 | | 0.0036 | 14.0 | 1582 | 0.8891 | 0.85 | | 0.0032 | 15.0 | 1695 | 0.6524 | 0.87 | | 0.0028 | 16.0 | 1808 | 0.8631 | 0.84 | | 0.1188 | 17.0 | 1921 | 0.8491 | 0.86 | | 0.0024 | 18.0 | 2034 | 0.7876 | 0.86 | | 0.0022 | 19.0 | 2147 | 0.7970 | 0.85 | | 0.0022 | 20.0 | 2260 | 0.8411 | 0.86 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3