File size: 2,072 Bytes
e799ad9 3092223 e799ad9 3092223 e799ad9 3092223 e799ad9 3092223 e799ad9 3092223 e799ad9 3092223 e799ad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6949
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1595 | 0.99 | 28 | 0.5827 | 0.86 |
| 0.122 | 1.98 | 56 | 0.5915 | 0.86 |
| 0.0598 | 2.97 | 84 | 0.6342 | 0.86 |
| 0.0233 | 4.0 | 113 | 0.6145 | 0.85 |
| 0.0163 | 4.99 | 141 | 0.6766 | 0.86 |
| 0.0125 | 5.98 | 169 | 0.6286 | 0.89 |
| 0.0091 | 6.97 | 197 | 0.7157 | 0.86 |
| 0.0088 | 8.0 | 226 | 0.6633 | 0.89 |
| 0.0074 | 8.99 | 254 | 0.7196 | 0.87 |
| 0.0074 | 9.91 | 280 | 0.6949 | 0.88 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|