from transformers import ( PretrainedConfig, Blip2VisionConfig, Blip2QFormerConfig ) from .configuration_chatglm import ChatGLMConfig import copy from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class Blip2ChatGLMConfig(PretrainedConfig): """Mainly based on Blip2Config Args: PretrainedConfig (_type_): _description_ """ is_composition = True def __init__(self, vision_config=None, qformer_config=None, text_config=None, num_query_tokens=32, **kwargs): super().__init__(**kwargs) if vision_config is None: vision_config = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.") if qformer_config is None: qformer_config = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.") if text_config is None: text_config = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") self.vision_config = Blip2VisionConfig(**vision_config) self.qformer_config = Blip2QFormerConfig(**qformer_config) # text_model_type = text_config["model_type"] if "model_type" in text_config else "opt" # self.text_config = CONFIG_MAPPING[text_model_type](**text_config) self.text_config = ChatGLMConfig(**text_config) # self.tie_word_embeddings = self.text_config.tie_word_embeddings self.tie_word_embeddings = False # I don't know what this is # self.is_encoder_decoder = self.text_config.is_encoder_decoder self.is_encoder_decoder = True # chatglm is an encoder-decoder model self.num_query_tokens = num_query_tokens self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size # self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES self.use_decoder_only_language_model = True # chatglm has no encoder self.initializer_factor = 1.0 self.initializer_range = 0.02 @classmethod def from_vision_qformer_text_configs( cls, vision_config: Blip2VisionConfig, qformer_config: Blip2QFormerConfig, text_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`Blip2Config`] (or a derived class) from a BLIP-2 vision model, Q-Former and language model configurations. Returns: [`Blip2Config`]: An instance of a configuration object """ return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **kwargs, ) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["vision_config"] = self.vision_config.to_dict() output["qformer_config"] = self.qformer_config.to_dict() output["text_config"] = self.text_config.to_dict() output["model_type"] = self.__class__.model_type return output