shwu
commited on
Commit
·
51e5ad2
1
Parent(s):
35e0244
feat: better modeling_chatglm
Browse files- .gitattributes +34 -34
- README.md +61 -61
- modeling_blip2chatglm.py +181 -345
- modeling_chatglm.py +22 -20
.gitattributes
CHANGED
@@ -1,34 +1,34 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,61 +1,61 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- zh
|
4 |
-
- en
|
5 |
-
tags:
|
6 |
-
- chatglm
|
7 |
-
- blip2
|
8 |
-
---
|
9 |
-
|
10 |
-
# Model Card for blip2zh-chatglm-6b
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
blip2zh-chatglm-6b是基于blip2训练的中文多模态聊天模型。具有基本的图像理解能力。
|
17 |
-
由于blip2的训练方式不会对语言模型进行微调,因此在纯文本对话中的行为可以保持和原始chatglm一致。
|
18 |
-
|
19 |
-
注意:由于目前模型仅经过blip2两阶段图文对齐预训练,没有包括vqa或者指令微调等具体下游任务的训练,因此依然容易生成不符合预期的内容。
|
20 |
-
|
21 |
-
- **blip2 base model**: [bert-base-chinese](https://huggingface.co/bert-base-chinese)
|
22 |
-
- **Vision encoder**: eva-clip-vit-g
|
23 |
-
- **Language model**: [chatglm-6b](https://github.com/THUDM/ChatGLM-6B) at [commit](https://huggingface.co/THUDM/chatglm-6b/commit/9324de70a93207c9a310cf99d5d6261791489691)
|
24 |
-
|
25 |
-
### Model Sources
|
26 |
-
|
27 |
-
- [**Training Code**](https://github.com/XiPotatonium/LAVIS): blip2训练代码,基于[LAVIS](https://github.com/salesforce/LAVIS)
|
28 |
-
- [**webui**](https://github.com/XiPotatonium/chatbot-webui): 一个由gradio实现的webui
|
29 |
-
- [**api**](https://github.com/XiPotatonium/chatbot-api): 一个由fastapi实现的api服务,可以部署在本地,同时也支持一些其他类型的本地可部署语言模型。
|
30 |
-
|
31 |
-
## Uses
|
32 |
-
|
33 |
-
模型参数包含了图像编码器,blip2和chatglm-6b。
|
34 |
-
|
35 |
-
加载模型及推理可以参考[api](https://github.com/XiPotatonium/chatbot-api/blob/main/src/model/blip2chatglm/__init__.py)的实现
|
36 |
-
|
37 |
-
一些[example](https://github.com/XiPotatonium/chatbot-api/blob/main/examples.ipynb)
|
38 |
-
|
39 |
-
## Limitations
|
40 |
-
|
41 |
-
受限于中文数据集,目前图像理解能力依然有限,会产生无关或者错误的内容。
|
42 |
-
目前没有引入多轮对话训练以及指令微调。多轮对话可能会受到上下文的干扰。
|
43 |
-
并且同样受限于chatglm-6b本身的对话效果。
|
44 |
-
|
45 |
-
## Training Details
|
46 |
-
|
47 |
-
### Training Data
|
48 |
-
|
49 |
-
* [laion-2b-chinese](https://huggingface.co/datasets/IDEA-CCNL/laion2B-multi-chinese-subset): 我们仅选取了其中clip分数较高的670k图文对并采样了部分数据进行训练。
|
50 |
-
* [coco-zh](https://github.com/li-xirong/coco-cn)
|
51 |
-
* [flickr8k-zh](http://lixirong.net/datasets/flickr8kcn)
|
52 |
-
|
53 |
-
### Training Procedure
|
54 |
-
|
55 |
-
基于blip2的两阶段训练方法
|
56 |
-
|
57 |
-
## Demos
|
58 |
-
|
59 |
-
![](imgs/demo1.png)
|
60 |
-
![](imgs/demo2.png)
|
61 |
-
![](imgs/demo3.png)
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- chatglm
|
7 |
+
- blip2
|
8 |
+
---
|
9 |
+
|
10 |
+
# Model Card for blip2zh-chatglm-6b
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
blip2zh-chatglm-6b是基于blip2训练的中文多模态聊天模型。具有基本的图像理解能力。
|
17 |
+
由于blip2的训练方式不会对语言模型进行微调,因此在纯文本对话中的行为可以保持和原始chatglm一致。
|
18 |
+
|
19 |
+
注意:由于目前模型仅经过blip2两阶段图文对齐预训练,没有包括vqa或者指令微调等具体下游任务的训练,因此依然容易生成不符合预期的内容。
|
20 |
+
|
21 |
+
- **blip2 base model**: [bert-base-chinese](https://huggingface.co/bert-base-chinese)
|
22 |
+
- **Vision encoder**: eva-clip-vit-g
|
23 |
+
- **Language model**: [chatglm-6b](https://github.com/THUDM/ChatGLM-6B) at [commit](https://huggingface.co/THUDM/chatglm-6b/commit/9324de70a93207c9a310cf99d5d6261791489691)
|
24 |
+
|
25 |
+
### Model Sources
|
26 |
+
|
27 |
+
- [**Training Code**](https://github.com/XiPotatonium/LAVIS): blip2训练代码,基于[LAVIS](https://github.com/salesforce/LAVIS)
|
28 |
+
- [**webui**](https://github.com/XiPotatonium/chatbot-webui): 一个由gradio实现的webui
|
29 |
+
- [**api**](https://github.com/XiPotatonium/chatbot-api): 一个由fastapi实现的api服务,可以部署在本地,同时也支持一些其他类型的本地可部署语言模型。
|
30 |
+
|
31 |
+
## Uses
|
32 |
+
|
33 |
+
模型参数包含了图像编码器,blip2和chatglm-6b。
|
34 |
+
|
35 |
+
加载模型及推理可以参考[api](https://github.com/XiPotatonium/chatbot-api/blob/main/src/model/blip2chatglm/__init__.py)的实现
|
36 |
+
|
37 |
+
一些[example](https://github.com/XiPotatonium/chatbot-api/blob/main/examples.ipynb)
|
38 |
+
|
39 |
+
## Limitations
|
40 |
+
|
41 |
+
受限于中文数据集,目前图像理解能力依然有限,会产生无关或者错误的内容。
|
42 |
+
目前没有引入多轮对话训练以及指令微调。多轮对话可能会受到上下文的干扰。
|
43 |
+
并且同样受限于chatglm-6b本身的对话效果。
|
44 |
+
|
45 |
+
## Training Details
|
46 |
+
|
47 |
+
### Training Data
|
48 |
+
|
49 |
+
* [laion-2b-chinese](https://huggingface.co/datasets/IDEA-CCNL/laion2B-multi-chinese-subset): 我们仅选取了其中clip分数较高的670k图文对并采样了部分数据进行训练。
|
50 |
+
* [coco-zh](https://github.com/li-xirong/coco-cn)
|
51 |
+
* [flickr8k-zh](http://lixirong.net/datasets/flickr8kcn)
|
52 |
+
|
53 |
+
### Training Procedure
|
54 |
+
|
55 |
+
基于blip2的两阶段训练方法
|
56 |
+
|
57 |
+
## Demos
|
58 |
+
|
59 |
+
![](imgs/demo1.png)
|
60 |
+
![](imgs/demo2.png)
|
61 |
+
![](imgs/demo3.png)
|
modeling_blip2chatglm.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import copy
|
2 |
import os
|
3 |
from typing import Callable, List, Optional, Tuple, Union
|
|
|
4 |
import torch
|
5 |
from torch.nn import CrossEntropyLoss
|
|
|
6 |
import warnings
|
7 |
from torch import Tensor, nn
|
8 |
|
9 |
from transformers import (
|
10 |
PreTrainedModel,
|
|
|
11 |
Blip2VisionModel,
|
12 |
Blip2QFormerModel,
|
13 |
Blip2Model,
|
@@ -137,12 +140,14 @@ class Blip2ChatGLMForConditionalGeneration(Blip2ForConditionalGeneration):
|
|
137 |
if image_slot_offset is None:
|
138 |
# image as prefix
|
139 |
# update data to avoid inplace operation of leaf Variable
|
140 |
-
inputs_embeds.data[
|
|
|
|
|
141 |
else:
|
142 |
for i, offset in enumerate(image_slot_offset):
|
143 |
-
inputs_embeds.data[
|
144 |
-
|
145 |
-
|
146 |
|
147 |
outputs = self.language_model(
|
148 |
input_ids=input_ids,
|
@@ -181,118 +186,162 @@ class Blip2ChatGLMForConditionalGeneration(Blip2ForConditionalGeneration):
|
|
181 |
language_model_outputs=outputs,
|
182 |
)
|
183 |
|
184 |
-
|
185 |
-
def stream_chat(
|
186 |
self,
|
187 |
-
tokenizer,
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
max_length=128,
|
192 |
-
top_p=0.9,
|
193 |
-
do_sample=True,
|
194 |
-
temperature=1,
|
195 |
):
|
196 |
device = self.device
|
197 |
-
# 1. Prepare token ids
|
198 |
-
images = []
|
199 |
-
image_slots = []
|
200 |
-
|
201 |
nvtokens = self.config.num_query_tokens
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
input_ids
|
211 |
-
|
212 |
-
qtext = query
|
213 |
-
qimg = None
|
214 |
-
input_ids += tokenizer(qtext + f"\n答:").input_ids
|
215 |
-
if qimg is not None:
|
216 |
-
images.append(qimg)
|
217 |
-
image_slots.append(len(input_ids) - slot_offset) # count from backward
|
218 |
-
|
219 |
-
for ri, (q, r) in enumerate(reversed(history)):
|
220 |
-
if len(input_ids) >= max_length:
|
221 |
-
break
|
222 |
-
i = len(history) - ri - 1
|
223 |
-
cur_input_ids: List[int] = tokenizer(
|
224 |
-
f"[Round {i}]\n问:", add_special_tokens=False
|
225 |
).input_ids
|
226 |
-
slot_offset = len(
|
227 |
-
if isinstance(
|
228 |
-
qtext, qimg =
|
229 |
# image slot, embedding will be replaced by image embeddings
|
230 |
-
|
231 |
else:
|
232 |
-
qtext =
|
233 |
qimg = None
|
234 |
-
|
235 |
-
qtext + f"\n答:{r}\n", add_special_tokens=False
|
236 |
-
).input_ids
|
237 |
-
input_ids = cur_input_ids + input_ids
|
238 |
if qimg is not None:
|
239 |
-
|
240 |
image_slots.append(
|
241 |
len(input_ids) - slot_offset
|
242 |
) # count from backward
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
else:
|
263 |
-
input_ids =
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
# 2. Prepare image embeddings
|
269 |
-
if len(
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
|
285 |
-
|
286 |
else:
|
287 |
-
|
288 |
|
289 |
# 3. Place image embeddings into slots
|
290 |
-
input_ids =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
inputs_embeds = self.language_model.transformer.word_embeddings(input_ids)
|
292 |
-
for
|
293 |
-
|
|
|
294 |
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
logits_processor.append(InvalidScoreLogitsProcessor())
|
297 |
gen_kwargs = {
|
298 |
"max_length": max_length,
|
@@ -301,265 +350,52 @@ class Blip2ChatGLMForConditionalGeneration(Blip2ForConditionalGeneration):
|
|
301 |
"top_p": top_p,
|
302 |
"temperature": temperature,
|
303 |
"logits_processor": logits_processor,
|
|
|
304 |
}
|
305 |
|
306 |
-
|
307 |
input_ids=input_ids, inputs_embeds=inputs_embeds, **gen_kwargs
|
308 |
-
)
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
313 |
|
314 |
@torch.no_grad()
|
315 |
-
def
|
316 |
self,
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
**kwargs,
|
326 |
):
|
327 |
-
|
328 |
-
|
329 |
-
Args:
|
330 |
-
input_ids (_type_): _description_
|
331 |
-
inputs_embeds (_type_): _description_
|
332 |
-
generation_config (Optional[GenerationConfig], optional): _description_. Defaults to None.
|
333 |
-
logits_processor (Optional[LogitsProcessorList], optional): _description_. Defaults to None.
|
334 |
-
stopping_criteria (Optional[StoppingCriteriaList], optional): _description_. Defaults to None.
|
335 |
-
prefix_allowed_tokens_fn (Optional[ Callable[[int, torch.Tensor], List[int]] ], optional): _description_. Defaults to None.
|
336 |
-
|
337 |
-
Yields:
|
338 |
-
_type_: _description_
|
339 |
-
"""
|
340 |
-
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
341 |
-
|
342 |
-
if generation_config is None:
|
343 |
-
generation_config = self.language_model.generation_config
|
344 |
-
generation_config = copy.deepcopy(generation_config)
|
345 |
-
model_kwargs = generation_config.update(**kwargs)
|
346 |
-
bos_token_id, eos_token_id = (
|
347 |
-
generation_config.bos_token_id,
|
348 |
-
generation_config.eos_token_id,
|
349 |
)
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
363 |
-
UserWarning,
|
364 |
-
)
|
365 |
-
elif generation_config.max_new_tokens is not None:
|
366 |
-
generation_config.max_length = (
|
367 |
-
generation_config.max_new_tokens + input_ids_seq_length
|
368 |
-
)
|
369 |
-
if not has_default_max_length:
|
370 |
-
logger.warn(
|
371 |
-
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
372 |
-
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
373 |
-
"Please refer to the documentation for more information. "
|
374 |
-
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
375 |
-
UserWarning,
|
376 |
-
)
|
377 |
-
|
378 |
-
if input_ids_seq_length >= generation_config.max_length:
|
379 |
-
input_ids_string = (
|
380 |
-
"decoder_input_ids"
|
381 |
-
if self.language_model.config.is_encoder_decoder
|
382 |
-
else "input_ids"
|
383 |
-
)
|
384 |
-
logger.warning(
|
385 |
-
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
386 |
-
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
387 |
-
" increasing `max_new_tokens`."
|
388 |
-
)
|
389 |
-
|
390 |
-
# 2. Set generation parameters if not already defined
|
391 |
-
logits_processor = (
|
392 |
-
logits_processor if logits_processor is not None else LogitsProcessorList()
|
393 |
-
)
|
394 |
-
stopping_criteria = (
|
395 |
-
stopping_criteria
|
396 |
-
if stopping_criteria is not None
|
397 |
-
else StoppingCriteriaList()
|
398 |
-
)
|
399 |
-
|
400 |
-
logits_processor = self.language_model._get_logits_processor(
|
401 |
-
generation_config=generation_config,
|
402 |
-
input_ids_seq_length=input_ids_seq_length,
|
403 |
-
encoder_input_ids=input_ids,
|
404 |
-
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
405 |
-
logits_processor=logits_processor,
|
406 |
-
)
|
407 |
-
|
408 |
-
stopping_criteria = self.language_model._get_stopping_criteria(
|
409 |
-
generation_config=generation_config, stopping_criteria=stopping_criteria
|
410 |
-
)
|
411 |
-
logits_warper = self.language_model._get_logits_warper(generation_config)
|
412 |
-
|
413 |
-
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
414 |
-
scores = None
|
415 |
-
while True:
|
416 |
-
model_inputs = self.prepare_inputs_for_generation(
|
417 |
-
input_ids, inputs_embeds=inputs_embeds, **model_kwargs
|
418 |
-
)
|
419 |
-
# forward pass to get next token
|
420 |
-
outputs = self.language_model(
|
421 |
-
**model_inputs,
|
422 |
-
return_dict=True,
|
423 |
-
output_attentions=False,
|
424 |
-
output_hidden_states=False,
|
425 |
-
)
|
426 |
-
|
427 |
-
next_token_logits = outputs.logits[:, -1, :]
|
428 |
-
|
429 |
-
# pre-process distribution
|
430 |
-
next_token_scores = logits_processor(input_ids, next_token_logits)
|
431 |
-
next_token_scores = logits_warper(input_ids, next_token_scores)
|
432 |
-
|
433 |
-
# sample
|
434 |
-
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
435 |
-
if generation_config.do_sample:
|
436 |
-
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
437 |
-
else:
|
438 |
-
next_tokens = torch.argmax(probs, dim=-1)
|
439 |
-
|
440 |
-
# update generated ids, model inputs, and length for next step
|
441 |
-
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
442 |
-
inputs_embeds = torch.cat(
|
443 |
-
[
|
444 |
-
inputs_embeds,
|
445 |
-
self.language_model.get_input_embeddings()(next_tokens)[:, None, :],
|
446 |
-
],
|
447 |
-
dim=1,
|
448 |
-
)
|
449 |
-
model_kwargs = self.language_model._update_model_kwargs_for_generation(
|
450 |
-
outputs,
|
451 |
-
model_kwargs,
|
452 |
-
is_encoder_decoder=self.language_model.config.is_encoder_decoder,
|
453 |
-
)
|
454 |
-
unfinished_sequences = unfinished_sequences.mul(
|
455 |
-
(sum(next_tokens != i for i in eos_token_id)).long()
|
456 |
-
)
|
457 |
-
|
458 |
-
# stop when each sentence is finished, or if we exceed the maximum length
|
459 |
-
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
460 |
-
break
|
461 |
-
yield input_ids
|
462 |
-
|
463 |
-
def prepare_inputs_for_generation(
|
464 |
-
self,
|
465 |
-
input_ids: torch.LongTensor,
|
466 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
467 |
-
past: Optional[torch.Tensor] = None,
|
468 |
-
past_key_values: Optional[torch.Tensor] = None,
|
469 |
-
attention_mask: Optional[torch.Tensor] = None,
|
470 |
-
position_ids: Optional[torch.Tensor] = None,
|
471 |
-
**kwargs,
|
472 |
-
) -> dict:
|
473 |
-
"""slightly modified from chatglm implementation to support inputs_embeds
|
474 |
-
|
475 |
-
Args:
|
476 |
-
input_ids (torch.LongTensor): _description_
|
477 |
-
inputs_embeds (Optional[torch.Tensor], optional): _description_. Defaults to None.
|
478 |
-
past (Optional[torch.Tensor], optional): _description_. Defaults to None.
|
479 |
-
past_key_values (Optional[torch.Tensor], optional): _description_. Defaults to None.
|
480 |
-
attention_mask (Optional[torch.Tensor], optional): _description_. Defaults to None.
|
481 |
-
position_ids (Optional[torch.Tensor], optional): _description_. Defaults to None.
|
482 |
-
|
483 |
-
Returns:
|
484 |
-
dict: _description_
|
485 |
-
"""
|
486 |
-
batch_size, seq_length = input_ids.shape
|
487 |
-
MASK, gMASK = self.language_model.config.mask_token_id, self.language_model.config.gmask_token_id
|
488 |
-
seqs = input_ids.tolist()
|
489 |
-
mask_positions, use_gmasks = [], []
|
490 |
-
for seq in seqs:
|
491 |
-
mask_token = gMASK if gMASK in seq else MASK
|
492 |
-
use_gmask = mask_token == gMASK
|
493 |
-
mask_positions.append(seq.index(mask_token))
|
494 |
-
use_gmasks.append(use_gmask)
|
495 |
-
|
496 |
-
# only last token for input_ids if past is not None
|
497 |
-
if past is not None or past_key_values is not None:
|
498 |
-
last_token = input_ids[:, -1].unsqueeze(-1)
|
499 |
-
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
500 |
-
attention_mask = attention_mask[:, :, -1:]
|
501 |
-
else:
|
502 |
-
attention_mask = None
|
503 |
-
if position_ids is not None:
|
504 |
-
position_ids = position_ids[..., -1:]
|
505 |
-
else:
|
506 |
-
context_lengths = [seq.index(self.language_model.config.bos_token_id) for seq in seqs]
|
507 |
-
if self.language_model.position_encoding_2d:
|
508 |
-
position_ids = torch.tensor(
|
509 |
-
[
|
510 |
-
[mask_position, seq_length - context_length]
|
511 |
-
for mask_position, context_length in zip(
|
512 |
-
mask_positions, context_lengths
|
513 |
-
)
|
514 |
-
],
|
515 |
-
dtype=torch.long,
|
516 |
-
device=input_ids.device,
|
517 |
-
).unsqueeze(-1)
|
518 |
-
else:
|
519 |
-
position_ids = torch.tensor(
|
520 |
-
[mask_position for mask_position in mask_positions],
|
521 |
-
dtype=torch.long,
|
522 |
-
device=input_ids.device,
|
523 |
-
).unsqueeze(-1)
|
524 |
-
|
525 |
-
if past is None:
|
526 |
-
past = past_key_values
|
527 |
-
return {
|
528 |
-
"input_ids": last_token,
|
529 |
-
"past_key_values": past,
|
530 |
-
"position_ids": position_ids,
|
531 |
-
"attention_mask": attention_mask,
|
532 |
-
}
|
533 |
-
else:
|
534 |
-
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
535 |
-
logger.warning_once(
|
536 |
-
f"The dtype of attention mask ({attention_mask.dtype}) is not bool"
|
537 |
-
)
|
538 |
-
attention_mask = None
|
539 |
-
if attention_mask is None:
|
540 |
-
attention_mask = self.language_model.get_masks(input_ids, device=input_ids.device)
|
541 |
-
if position_ids is None:
|
542 |
-
position_ids = self.language_model.get_position_ids(
|
543 |
-
input_ids,
|
544 |
-
device=input_ids.device,
|
545 |
-
mask_positions=mask_positions,
|
546 |
-
use_gmasks=use_gmasks,
|
547 |
-
)
|
548 |
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
"position_ids": position_ids,
|
557 |
-
"attention_mask": attention_mask,
|
558 |
-
}
|
559 |
-
else:
|
560 |
-
return {
|
561 |
-
"input_ids": input_ids,
|
562 |
-
"past_key_values": past,
|
563 |
-
"position_ids": position_ids,
|
564 |
-
"attention_mask": attention_mask,
|
565 |
-
}
|
|
|
1 |
import copy
|
2 |
import os
|
3 |
from typing import Callable, List, Optional, Tuple, Union
|
4 |
+
import numpy as np
|
5 |
import torch
|
6 |
from torch.nn import CrossEntropyLoss
|
7 |
+
from torch.nn.utils.rnn import pad_sequence
|
8 |
import warnings
|
9 |
from torch import Tensor, nn
|
10 |
|
11 |
from transformers import (
|
12 |
PreTrainedModel,
|
13 |
+
PreTrainedTokenizer,
|
14 |
Blip2VisionModel,
|
15 |
Blip2QFormerModel,
|
16 |
Blip2Model,
|
|
|
140 |
if image_slot_offset is None:
|
141 |
# image as prefix
|
142 |
# update data to avoid inplace operation of leaf Variable
|
143 |
+
inputs_embeds.data[
|
144 |
+
:, : self.config.num_query_tokens, :
|
145 |
+
] = language_model_inputs
|
146 |
else:
|
147 |
for i, offset in enumerate(image_slot_offset):
|
148 |
+
inputs_embeds.data[
|
149 |
+
i, offset : offset + self.config.num_query_tokens, :
|
150 |
+
] = language_model_inputs[i]
|
151 |
|
152 |
outputs = self.language_model(
|
153 |
input_ids=input_ids,
|
|
|
186 |
language_model_outputs=outputs,
|
187 |
)
|
188 |
|
189 |
+
def prepare_inputs_for_chat(
|
|
|
190 |
self,
|
191 |
+
tokenizer: PreTrainedTokenizer,
|
192 |
+
queries: List[Union[str, Tuple[str, torch.Tensor]]],
|
193 |
+
histories: List[List[Tuple[Union[str, Tuple[str, torch.Tensor]], str]]],
|
194 |
+
max_length: int,
|
|
|
|
|
|
|
|
|
195 |
):
|
196 |
device = self.device
|
|
|
|
|
|
|
|
|
197 |
nvtokens = self.config.num_query_tokens
|
198 |
+
# 1. Prepare token ids
|
199 |
+
all_images = []
|
200 |
+
all_image_slots = []
|
201 |
+
all_input_ids = []
|
202 |
+
for query, history in zip(queries, histories):
|
203 |
+
image_slots = []
|
204 |
+
|
205 |
+
if history:
|
206 |
+
input_ids = tokenizer(
|
207 |
+
f"[Round {len(history)}]\n问:", add_special_tokens=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
).input_ids
|
209 |
+
slot_offset = len(input_ids)
|
210 |
+
if isinstance(query, tuple):
|
211 |
+
qtext, qimg = query
|
212 |
# image slot, embedding will be replaced by image embeddings
|
213 |
+
input_ids.extend([tokenizer.unk_token_id] * nvtokens)
|
214 |
else:
|
215 |
+
qtext = query
|
216 |
qimg = None
|
217 |
+
input_ids += tokenizer(qtext + f"\n答:").input_ids
|
|
|
|
|
|
|
218 |
if qimg is not None:
|
219 |
+
all_images.append(qimg)
|
220 |
image_slots.append(
|
221 |
len(input_ids) - slot_offset
|
222 |
) # count from backward
|
223 |
+
|
224 |
+
for ri, (q, r) in enumerate(reversed(history)):
|
225 |
+
if len(input_ids) >= max_length:
|
226 |
+
break
|
227 |
+
i = len(history) - ri - 1
|
228 |
+
cur_input_ids: List[int] = tokenizer(
|
229 |
+
f"[Round {i}]\n问:", add_special_tokens=False
|
230 |
+
).input_ids
|
231 |
+
slot_offset = len(cur_input_ids)
|
232 |
+
if isinstance(q, tuple):
|
233 |
+
qtext, qimg = q
|
234 |
+
# image slot, embedding will be replaced by image embeddings
|
235 |
+
cur_input_ids.extend([tokenizer.unk_token_id] * nvtokens)
|
236 |
+
else:
|
237 |
+
qtext = q
|
238 |
+
qimg = None
|
239 |
+
cur_input_ids += tokenizer(
|
240 |
+
qtext + f"\n答:{r}\n", add_special_tokens=False
|
241 |
+
).input_ids
|
242 |
+
input_ids = cur_input_ids + input_ids
|
243 |
+
if qimg is not None:
|
244 |
+
all_images.append(qimg)
|
245 |
+
image_slots.append(
|
246 |
+
len(input_ids) - slot_offset
|
247 |
+
) # count from backward
|
248 |
else:
|
249 |
+
input_ids = []
|
250 |
+
if isinstance(query, tuple):
|
251 |
+
qtext, qimg = query
|
252 |
+
# image slot, embedding will be replaced by image embeddings
|
253 |
+
input_ids.extend([tokenizer.unk_token_id] * nvtokens)
|
254 |
+
else:
|
255 |
+
qtext = query
|
256 |
+
qimg = None
|
257 |
+
input_ids += tokenizer(qtext).input_ids
|
258 |
+
if qimg is not None:
|
259 |
+
all_images.append(qimg)
|
260 |
+
image_slots.append(len(input_ids)) # count from backward
|
261 |
+
|
262 |
+
if len(input_ids) >= max_length:
|
263 |
+
# truncate
|
264 |
+
if (
|
265 |
+
image_slots[-1] > max_length
|
266 |
+
and image_slots[-1] - nvtokens < max_length
|
267 |
+
):
|
268 |
+
# A non-intact image slot is not allowed
|
269 |
+
input_ids = input_ids[-(image_slots[-1] - nvtokens) :]
|
270 |
+
else:
|
271 |
+
input_ids = input_ids[-max_length:]
|
272 |
+
if image_slots[-1] > max_length:
|
273 |
+
image_slots.pop()
|
274 |
+
all_images.pop()
|
275 |
+
|
276 |
+
all_image_slots.append(image_slots)
|
277 |
+
all_input_ids.append(input_ids)
|
278 |
|
279 |
# 2. Prepare image embeddings
|
280 |
+
if len(all_images) != 0:
|
281 |
+
vision_outputs = self.vision_model.forward(torch.cat(all_images, dim=0))
|
282 |
+
all_image_embeds = vision_outputs[0]
|
283 |
+
indices_or_sections = [len(chunk) for chunk in all_image_slots]
|
284 |
+
indices_or_sections = np.cumsum(indices_or_sections)
|
285 |
+
all_vtokens = []
|
286 |
+
# TODO: qformer not batched
|
287 |
+
for image_embeds in torch.tensor_split(
|
288 |
+
all_image_embeds, tuple(indices_or_sections)
|
289 |
+
):
|
290 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
291 |
+
device
|
292 |
+
)
|
293 |
|
294 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
295 |
+
query_outputs = self.qformer.forward(
|
296 |
+
query_embeds=query_tokens,
|
297 |
+
encoder_hidden_states=image_embeds,
|
298 |
+
encoder_attention_mask=image_atts,
|
299 |
+
)
|
300 |
+
query_output = query_outputs[0]
|
301 |
|
302 |
+
all_vtokens.append(self.language_projection(query_output))
|
303 |
else:
|
304 |
+
all_vtokens = None
|
305 |
|
306 |
# 3. Place image embeddings into slots
|
307 |
+
input_ids = (
|
308 |
+
torch.ones(
|
309 |
+
(len(all_input_ids), max(len(ids) for ids in all_input_ids)),
|
310 |
+
dtype=torch.long,
|
311 |
+
)
|
312 |
+
* tokenizer.pad_token_id
|
313 |
+
)
|
314 |
+
for i, ids in enumerate(all_input_ids):
|
315 |
+
# pad left
|
316 |
+
input_ids[i][-len(ids) :] = torch.as_tensor(ids, dtype=torch.long)
|
317 |
+
input_ids = input_ids.to(device)
|
318 |
inputs_embeds = self.language_model.transformer.word_embeddings(input_ids)
|
319 |
+
for i, (image_slots, vtokens) in enumerate(zip(all_image_slots, all_vtokens)):
|
320 |
+
for slot, vimg in zip(image_slots, vtokens):
|
321 |
+
inputs_embeds[i][-slot : -slot + nvtokens, :] = vimg
|
322 |
|
323 |
+
return input_ids, inputs_embeds
|
324 |
+
|
325 |
+
@torch.no_grad()
|
326 |
+
def batch_chat(
|
327 |
+
self,
|
328 |
+
tokenizer: PreTrainedTokenizer,
|
329 |
+
queries: List[Union[str, Tuple[str, torch.Tensor]]],
|
330 |
+
histories: List[List[Tuple[Union[str, Tuple[str, torch.Tensor]], str]]],
|
331 |
+
max_length: int = 2048,
|
332 |
+
num_beams=1,
|
333 |
+
do_sample=True,
|
334 |
+
top_p=0.7,
|
335 |
+
temperature=0.95,
|
336 |
+
logits_processor=None,
|
337 |
+
**kwargs,
|
338 |
+
):
|
339 |
+
input_ids, inputs_embeds = self.prepare_inputs_for_chat(
|
340 |
+
tokenizer, queries, histories, max_length
|
341 |
+
)
|
342 |
+
|
343 |
+
if logits_processor is None:
|
344 |
+
logits_processor = LogitsProcessorList()
|
345 |
logits_processor.append(InvalidScoreLogitsProcessor())
|
346 |
gen_kwargs = {
|
347 |
"max_length": max_length,
|
|
|
350 |
"top_p": top_p,
|
351 |
"temperature": temperature,
|
352 |
"logits_processor": logits_processor,
|
353 |
+
**kwargs,
|
354 |
}
|
355 |
|
356 |
+
outputs = self.language_model.generate(
|
357 |
input_ids=input_ids, inputs_embeds=inputs_embeds, **gen_kwargs
|
358 |
+
)
|
359 |
+
responses = []
|
360 |
+
for i, output in enumerate(outputs.tolist()):
|
361 |
+
output = output[len(input_ids[i]) :]
|
362 |
+
response = tokenizer.decode(output)
|
363 |
+
responses.append(self.language_model.process_response(response))
|
364 |
+
return responses
|
365 |
|
366 |
@torch.no_grad()
|
367 |
+
def stream_chat(
|
368 |
self,
|
369 |
+
tokenizer: PreTrainedTokenizer,
|
370 |
+
query: Union[str, Tuple[str, torch.Tensor]],
|
371 |
+
history: List[Tuple[Union[str, Tuple[str, torch.Tensor]], str]],
|
372 |
+
num_beams=5,
|
373 |
+
max_length=128,
|
374 |
+
top_p=0.9,
|
375 |
+
do_sample=True,
|
376 |
+
temperature=1,
|
377 |
**kwargs,
|
378 |
):
|
379 |
+
input_ids, inputs_embeds = self.prepare_inputs_for_chat(
|
380 |
+
tokenizer, [query], [history], max_length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
)
|
382 |
|
383 |
+
logits_processor = LogitsProcessorList()
|
384 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
385 |
+
gen_kwargs = {
|
386 |
+
"max_length": max_length,
|
387 |
+
"num_beams": num_beams,
|
388 |
+
"do_sample": do_sample,
|
389 |
+
"top_p": top_p,
|
390 |
+
"temperature": temperature,
|
391 |
+
"logits_processor": logits_processor,
|
392 |
+
**kwargs,
|
393 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
+
for outputs in self.language_model.stream_generate(
|
396 |
+
input_ids=input_ids, inputs_embeds=inputs_embeds, **gen_kwargs
|
397 |
+
):
|
398 |
+
outputs = outputs.tolist()[0][len(input_ids[0]) :]
|
399 |
+
response = tokenizer.decode(outputs)
|
400 |
+
response = self.language_model.process_response(response)
|
401 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_chatglm.py
CHANGED
@@ -913,15 +913,6 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
913 |
)
|
914 |
use_cache = False
|
915 |
|
916 |
-
# if input_ids is not None and inputs_embeds is not None:
|
917 |
-
# raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
918 |
-
# elif input_ids is not None:
|
919 |
-
# batch_size, seq_length = input_ids.shape[:2]
|
920 |
-
# elif inputs_embeds is not None:
|
921 |
-
# batch_size, seq_length. _ = inputs_embeds.shape[:2]
|
922 |
-
# else:
|
923 |
-
# raise ValueError("You have to specify either input_ids or inputs_embeds")
|
924 |
-
|
925 |
if input_ids is not None:
|
926 |
batch_size, seq_length = input_ids.shape[:2]
|
927 |
elif inputs_embeds is not None:
|
@@ -980,11 +971,6 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
980 |
if attention_mask is None:
|
981 |
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
982 |
|
983 |
-
# NOTE: this is a hack to make the code work with the LAVIS training
|
984 |
-
# else:
|
985 |
-
# pass
|
986 |
-
# attention_mask = attention_mask.to(input_ids.device)
|
987 |
-
|
988 |
for i, layer in enumerate(self.layers):
|
989 |
|
990 |
if output_hidden_states:
|
@@ -1109,11 +1095,16 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1109 |
[position_ids, new_position_id], dim=-1
|
1110 |
)
|
1111 |
|
|
|
|
|
|
|
|
|
1112 |
return model_kwargs
|
1113 |
|
1114 |
def prepare_inputs_for_generation(
|
1115 |
self,
|
1116 |
input_ids: torch.LongTensor,
|
|
|
1117 |
past: Optional[torch.Tensor] = None,
|
1118 |
past_key_values: Optional[torch.Tensor] = None,
|
1119 |
attention_mask: Optional[torch.Tensor] = None,
|
@@ -1174,12 +1165,23 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1174 |
use_gmasks=use_gmasks
|
1175 |
)
|
1176 |
|
1177 |
-
|
1178 |
-
|
1179 |
-
|
1180 |
-
"
|
1181 |
-
|
1182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1183 |
|
1184 |
def forward(
|
1185 |
self,
|
|
|
913 |
)
|
914 |
use_cache = False
|
915 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
916 |
if input_ids is not None:
|
917 |
batch_size, seq_length = input_ids.shape[:2]
|
918 |
elif inputs_embeds is not None:
|
|
|
971 |
if attention_mask is None:
|
972 |
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
973 |
|
|
|
|
|
|
|
|
|
|
|
974 |
for i, layer in enumerate(self.layers):
|
975 |
|
976 |
if output_hidden_states:
|
|
|
1095 |
[position_ids, new_position_id], dim=-1
|
1096 |
)
|
1097 |
|
1098 |
+
# set to None as prepare_inputs_for_generation use past for input embeds
|
1099 |
+
if "inputs_embeds" in model_kwargs:
|
1100 |
+
model_kwargs["inputs_embeds"] = None
|
1101 |
+
|
1102 |
return model_kwargs
|
1103 |
|
1104 |
def prepare_inputs_for_generation(
|
1105 |
self,
|
1106 |
input_ids: torch.LongTensor,
|
1107 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1108 |
past: Optional[torch.Tensor] = None,
|
1109 |
past_key_values: Optional[torch.Tensor] = None,
|
1110 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
1165 |
use_gmasks=use_gmasks
|
1166 |
)
|
1167 |
|
1168 |
+
if inputs_embeds is not None:
|
1169 |
+
assert input_ids.size(1) == inputs_embeds.size(
|
1170 |
+
1
|
1171 |
+
), f"Make sure that both input_ids ({input_ids.size(1)}) and inputs_embeds ({inputs_embeds.size(1)}) have the same length."
|
1172 |
+
return {
|
1173 |
+
"inputs_embeds": inputs_embeds,
|
1174 |
+
"past_key_values": past,
|
1175 |
+
"position_ids": position_ids,
|
1176 |
+
"attention_mask": attention_mask,
|
1177 |
+
}
|
1178 |
+
else:
|
1179 |
+
return {
|
1180 |
+
"input_ids": input_ids,
|
1181 |
+
"past_key_values": past,
|
1182 |
+
"position_ids": position_ids,
|
1183 |
+
"attention_mask": attention_mask,
|
1184 |
+
}
|
1185 |
|
1186 |
def forward(
|
1187 |
self,
|