Xenova HF staff commited on
Commit
18e0229
·
verified ·
1 Parent(s): 1ba921a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -1,7 +1,47 @@
1
  ---
2
  library_name: transformers.js
 
3
  ---
4
 
5
  https://huggingface.co/colbert-ir/colbertv2.0 with ONNX weights to be compatible with Transformers.js.
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
1
  ---
2
  library_name: transformers.js
3
+ pipeline_tag: feature-extraction
4
  ---
5
 
6
  https://huggingface.co/colbert-ir/colbertv2.0 with ONNX weights to be compatible with Transformers.js.
7
 
8
+
9
+ ## Usage (Transformers.js)
10
+
11
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
12
+ ```bash
13
+ npm i @xenova/transformers
14
+ ```
15
+
16
+ You can then use the model to compute embeddings like this:
17
+
18
+ ```js
19
+ import { pipeline } from '@xenova/transformers';
20
+
21
+ // Create a feature-extraction pipeline
22
+ const extractor = await pipeline('feature-extraction', 'Xenova/colbertv2.0');
23
+
24
+ // Compute sentence embeddings
25
+ const sentences = ['Hello world', 'This is a sentence'];
26
+ const output = await extractor(sentences, { pooling: 'mean', normalize: true });
27
+ console.log(output);
28
+ // Tensor {
29
+ // dims: [ 2, 768 ],
30
+ // type: 'float32',
31
+ // data: Float32Array(768) [ -0.008133978582918644, 0.00663341861218214, ... ],
32
+ // size: 768
33
+ // }
34
+ ```
35
+
36
+ You can convert this Tensor to a nested JavaScript array using `.tolist()`:
37
+ ```js
38
+ console.log(output.tolist());
39
+ // [
40
+ // [ -0.008133978582918644, 0.00663341861218214, 0.06555338203907013, ... ],
41
+ // [ -0.02630571834743023, 0.011146597564220428, 0.008737687021493912, ... ]
42
+ // ]
43
+ ```
44
+
45
+ ---
46
+
47
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).