English
cloudseg-models / models /cdnetv2.py
XavierJiezou's picture
Add files using upload-large-folder tool
63a9590 verified
# -*- coding: utf-8 -*-
# @Time : 2024/7/24 下午3:41
# @Author : xiaoshun
# @Email : [email protected]
# @File : cdnetv2.py
# @Software: PyCharm
"""Cloud detection Network"""
"""
This is the implementation of CDnetV2 without multi-scale inputs. This implementation uses ResNet by default.
"""
# nn.GroupNorm
import torch
# import torch.nn as nn
import torch.nn.functional as F
from torch import nn
affine_par = True
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
padding = dilation
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
padding=padding, bias=False, dilation=dilation)
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
for i in self.bn2.parameters():
i.requires_grad = False
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par)
for i in self.bn3.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
# self.layerx_1 = Bottleneck_nosample(64, 64, stride=1, dilation=1)
# self.layerx_2 = Bottleneck(256, 64, stride=1, dilation=1, downsample=None)
# self.layerx_3 = Bottleneck_downsample(256, 64, stride=2, dilation=1)
class Res_block_1(nn.Module):
expansion = 4
def __init__(self, inplanes=64, planes=64, stride=1, dilation=1):
super(Res_block_1, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False),
nn.GroupNorm(8, planes),
nn.ReLU(inplace=True))
self.conv2 = nn.Sequential(
nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=1, bias=False, dilation=1),
nn.GroupNorm(8, planes),
nn.ReLU(inplace=True))
self.conv3 = nn.Sequential(
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False),
nn.GroupNorm(8, planes * 4))
self.relu = nn.ReLU(inplace=True)
self.down_sample = nn.Sequential(
nn.Conv2d(inplanes, planes * 4,
kernel_size=1, stride=1, bias=False),
nn.GroupNorm(8, planes * 4))
def forward(self, x):
# residual = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
residual = self.down_sample(x)
out += residual
out = self.relu(out)
return out
class Res_block_2(nn.Module):
expansion = 4
def __init__(self, inplanes=256, planes=64, stride=1, dilation=1):
super(Res_block_2, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False),
nn.GroupNorm(8, planes),
nn.ReLU(inplace=True))
self.conv2 = nn.Sequential(
nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=1, bias=False, dilation=1),
nn.GroupNorm(8, planes),
nn.ReLU(inplace=True))
self.conv3 = nn.Sequential(
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False),
nn.GroupNorm(8, planes * 4))
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
out += residual
out = self.relu(out)
return out
class Res_block_3(nn.Module):
expansion = 4
def __init__(self, inplanes=256, planes=64, stride=1, dilation=1):
super(Res_block_3, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False),
nn.GroupNorm(8, planes),
nn.ReLU(inplace=True))
self.conv2 = nn.Sequential(
nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=1, bias=False, dilation=1),
nn.GroupNorm(8, planes),
nn.ReLU(inplace=True))
self.conv3 = nn.Sequential(
nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False),
nn.GroupNorm(8, planes * 4))
self.relu = nn.ReLU(inplace=True)
self.downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * 4,
kernel_size=1, stride=stride, bias=False),
nn.GroupNorm(8, planes * 4))
def forward(self, x):
# residual = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
# residual = self.downsample(x)
out += self.downsample(x)
out = self.relu(out)
return out
class Classifier_Module(nn.Module):
def __init__(self, dilation_series, padding_series, num_classes):
super(Classifier_Module, self).__init__()
self.conv2d_list = nn.ModuleList()
for dilation, padding in zip(dilation_series, padding_series):
self.conv2d_list.append(
nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True))
for m in self.conv2d_list:
m.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.conv2d_list[0](x)
for i in range(len(self.conv2d_list) - 1):
out += self.conv2d_list[i + 1](x)
return out
class _ConvBNReLU(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, relu6=False, norm_layer=nn.BatchNorm2d):
super(_ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
self.bn = norm_layer(out_channels)
self.relu = nn.ReLU6(True) if relu6 else nn.ReLU(True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class _ASPPConv(nn.Module):
def __init__(self, in_channels, out_channels, atrous_rate, norm_layer):
super(_ASPPConv, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
def forward(self, x):
return self.block(x)
class _AsppPooling(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer):
super(_AsppPooling, self).__init__()
self.gap = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
def forward(self, x):
size = x.size()[2:]
pool = self.gap(x)
out = F.interpolate(pool, size, mode='bilinear', align_corners=True)
return out
class _ASPP(nn.Module):
def __init__(self, in_channels, atrous_rates, norm_layer):
super(_ASPP, self).__init__()
out_channels = 256
self.b0 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
rate1, rate2, rate3 = tuple(atrous_rates)
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
self.project = nn.Sequential(
nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True),
nn.Dropout(0.5)
)
def forward(self, x):
feat1 = self.b0(x)
feat2 = self.b1(x)
feat3 = self.b2(x)
feat4 = self.b3(x)
feat5 = self.b4(x)
x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
x = self.project(x)
return x
class _DeepLabHead(nn.Module):
def __init__(self, num_classes, c1_channels=256, norm_layer=nn.BatchNorm2d):
super(_DeepLabHead, self).__init__()
self.aspp = _ASPP(2048, [12, 24, 36], norm_layer=norm_layer)
self.c1_block = _ConvBNReLU(c1_channels, 48, 3, padding=1, norm_layer=norm_layer)
self.block = nn.Sequential(
_ConvBNReLU(304, 256, 3, padding=1, norm_layer=norm_layer),
nn.Dropout(0.5),
_ConvBNReLU(256, 256, 3, padding=1, norm_layer=norm_layer),
nn.Dropout(0.1),
nn.Conv2d(256, num_classes, 1))
def forward(self, x, c1):
size = c1.size()[2:]
c1 = self.c1_block(c1)
x = self.aspp(x)
x = F.interpolate(x, size, mode='bilinear', align_corners=True)
return self.block(torch.cat([x, c1], dim=1))
class _CARM(nn.Module):
def __init__(self, in_planes, ratio=8):
super(_CARM, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1_1 = nn.Linear(in_planes, in_planes // ratio)
self.fc1_2 = nn.Linear(in_planes // ratio, in_planes)
self.fc2_1 = nn.Linear(in_planes, in_planes // ratio)
self.fc2_2 = nn.Linear(in_planes // ratio, in_planes)
self.relu = nn.ReLU(True)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.avg_pool(x)
avg_out = avg_out.view(avg_out.size(0), -1)
avg_out = self.fc1_2(self.relu(self.fc1_1(avg_out)))
max_out = self.max_pool(x)
max_out = max_out.view(max_out.size(0), -1)
max_out = self.fc2_2(self.relu(self.fc2_1(max_out)))
max_out_size = max_out.size()[1]
avg_out = torch.reshape(avg_out, (-1, max_out_size, 1, 1))
max_out = torch.reshape(max_out, (-1, max_out_size, 1, 1))
out = self.sigmoid(avg_out + max_out)
x = out * x
return x
class FSFB_CH(nn.Module):
def __init__(self, in_planes, num, ratio=8):
super(FSFB_CH, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1_1 = nn.Linear(in_planes, in_planes // ratio)
self.fc1_2 = nn.Linear(in_planes // ratio, num * in_planes)
self.fc2_1 = nn.Linear(in_planes, in_planes // ratio)
self.fc2_2 = nn.Linear(in_planes // ratio, num * in_planes)
self.relu = nn.ReLU(True)
self.fc3 = nn.Linear(num * in_planes, 2 * num * in_planes)
self.fc4 = nn.Linear(2 * num * in_planes, 2 * num * in_planes)
self.fc5 = nn.Linear(2 * num * in_planes, num * in_planes)
self.softmax = nn.Softmax(dim=3)
def forward(self, x, num):
avg_out = self.avg_pool(x)
avg_out = avg_out.view(avg_out.size(0), -1)
avg_out = self.fc1_2(self.relu(self.fc1_1(avg_out)))
max_out = self.max_pool(x)
max_out = max_out.view(max_out.size(0), -1)
max_out = self.fc2_2(self.relu(self.fc2_1(max_out)))
out = avg_out + max_out
out = self.relu(self.fc3(out))
out = self.relu(self.fc4(out))
out = self.relu(self.fc5(out)) # (N, num*in_planes)
out_size = out.size()[1]
out = torch.reshape(out, (-1, out_size // num, 1, num)) # (N, in_planes, 1, num )
out = self.softmax(out)
channel_scale = torch.chunk(out, num, dim=3) # (N, in_planes, 1, 1 )
return channel_scale
class FSFB_SP(nn.Module):
def __init__(self, num, norm_layer=nn.BatchNorm2d):
super(FSFB_SP, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(2, 2 * num, kernel_size=3, padding=1, bias=False),
norm_layer(2 * num),
nn.ReLU(True),
nn.Conv2d(2 * num, 4 * num, kernel_size=3, padding=1, bias=False),
norm_layer(4 * num),
nn.ReLU(True),
nn.Conv2d(4 * num, 4 * num, kernel_size=3, padding=1, bias=False),
norm_layer(4 * num),
nn.ReLU(True),
nn.Conv2d(4 * num, 2 * num, kernel_size=3, padding=1, bias=False),
norm_layer(2 * num),
nn.ReLU(True),
nn.Conv2d(2 * num, num, kernel_size=3, padding=1, bias=False)
)
self.softmax = nn.Softmax(dim=1)
def forward(self, x, num):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv(x)
x = self.softmax(x)
spatial_scale = torch.chunk(x, num, dim=1)
return spatial_scale
##################################################################################################################
class _HFFM(nn.Module):
def __init__(self, in_channels, atrous_rates, norm_layer=nn.BatchNorm2d):
super(_HFFM, self).__init__()
out_channels = 256
self.b0 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
rate1, rate2, rate3 = tuple(atrous_rates)
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
self.carm = _CARM(in_channels)
self.sa = FSFB_SP(4, norm_layer)
self.ca = FSFB_CH(out_channels, 4, 8)
def forward(self, x, num):
x = self.carm(x)
# feat1 = self.b0(x)
feat1 = self.b1(x)
feat2 = self.b2(x)
feat3 = self.b3(x)
feat4 = self.b4(x)
feat = feat1 + feat2 + feat3 + feat4
spatial_atten = self.sa(feat, num)
channel_atten = self.ca(feat, num)
feat_ca = channel_atten[0] * feat1 + channel_atten[1] * feat2 + channel_atten[2] * feat3 + channel_atten[
3] * feat4
feat_sa = spatial_atten[0] * feat1 + spatial_atten[1] * feat2 + spatial_atten[2] * feat3 + spatial_atten[
3] * feat4
feat_sa = feat_sa + feat_ca
return feat_sa
class _AFFM(nn.Module):
def __init__(self, in_channels=256, norm_layer=nn.BatchNorm2d):
super(_AFFM, self).__init__()
self.sa = FSFB_SP(2, norm_layer)
self.ca = FSFB_CH(in_channels, 2, 8)
self.carm = _CARM(in_channels)
def forward(self, feat1, feat2, hffm, num):
feat = feat1 + feat2
spatial_atten = self.sa(feat, num)
channel_atten = self.ca(feat, num)
feat_ca = channel_atten[0] * feat1 + channel_atten[1] * feat2
feat_sa = spatial_atten[0] * feat1 + spatial_atten[1] * feat2
output = self.carm(feat_sa + feat_ca + hffm)
# output = self.carm (feat_sa + hffm)
return output, channel_atten, spatial_atten
class block_Conv3x3(nn.Module):
def __init__(self, in_channels):
super(block_Conv3x3, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(in_channels, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True)
)
def forward(self, x):
return self.block(x)
class CDnetV2(nn.Module):
def __init__(self, in_channels=3,block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True):
self.inplanes = 256 # change
self.aux = aux
super().__init__()
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
# self.bn1 = nn.BatchNorm2d(64, affine = affine_par)
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64, affine=affine_par)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64, affine=affine_par)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(64, affine=affine_par)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(0.3)
for i in self.bn1.parameters():
i.requires_grad = False
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change
# self.layer1 = self._make_layer(block, 64, layers[0])
self.layerx_1 = Res_block_1(64, 64, stride=1, dilation=1)
self.layerx_2 = Res_block_2(256, 64, stride=1, dilation=1)
self.layerx_3 = Res_block_3(256, 64, stride=2, dilation=1)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
# self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes)
self.hffm = _HFFM(2048, [6, 12, 18])
self.affm_1 = _AFFM()
self.affm_2 = _AFFM()
self.affm_3 = _AFFM()
self.affm_4 = _AFFM()
self.carm = _CARM(256)
self.con_layer1_1 = block_Conv3x3(256)
self.con_res2 = block_Conv3x3(256)
self.con_res3 = block_Conv3x3(512)
self.con_res4 = block_Conv3x3(1024)
self.con_res5 = block_Conv3x3(2048)
self.dsn1 = nn.Sequential(
nn.Conv2d(256, num_classes, kernel_size=1, stride=1, padding=0)
)
self.dsn2 = nn.Sequential(
nn.Conv2d(256, num_classes, kernel_size=1, stride=1, padding=0)
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, 0.01)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# for i in m.parameters():
# i.requires_grad = False
# self.inplanes = 256 # change
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, affine=affine_par))
for i in downsample._modules['1'].parameters():
i.requires_grad = False
layers = []
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
# def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
# return block(dilation_series,padding_series,num_classes)
def base_forward(self, x):
x = self.relu(self.bn1(self.conv1(x))) # 1/2
x = self.relu(self.bn2(self.conv2(x)))
x = self.relu(self.bn3(self.conv3(x)))
x = self.maxpool(x) # 1/4
# x = self.layer1(x) # 1/8
# layer1
x = self.layerx_1(x) # 1/4
layer1_0 = x
x = self.layerx_2(x) # 1/4
layer1_0 = self.con_layer1_1(x + layer1_0) # 256
size_layer1_0 = layer1_0.size()[2:]
x = self.layerx_3(x) # 1/8
res2 = self.con_res2(x) # 256
size_res2 = res2.size()[2:]
# layer2-4
x = self.layer2(x) # 1/16
res3 = self.con_res3(x) # 256
x = self.layer3(x) # 1/16
res4 = self.con_res4(x) # 256
x = self.layer4(x) # 1/16
res5 = self.con_res5(x) # 256
# x = self.res5_con1x1(torch.cat([x, res4], dim=1))
return layer1_0, res2, res3, res4, res5, x, size_layer1_0, size_res2
# return res2, res3, res4, res5, x, layer_1024, size_res2
def forward(self, x):
# size = x.size()[2:]
layer1_0, res2, res3, res4, res5, layer4, size_layer1_0, size_res2 = self.base_forward(x)
hffm = self.hffm(layer4, 4) # 256 HFFM
res5 = res5 + hffm
aux_feature = res5 # loss_aux
# res5 = self.carm(res5)
res5, _, _ = self.affm_1(res4, res5, hffm, 2) # 1/16
# aux_feature = res5
res5, _, _ = self.affm_2(res3, res5, hffm, 2) # 1/16
res5 = F.interpolate(res5, size_res2, mode='bilinear', align_corners=True)
res5, _, _ = self.affm_3(res2, res5, F.interpolate(hffm, size_res2, mode='bilinear', align_corners=True), 2)
res5 = F.interpolate(res5, size_layer1_0, mode='bilinear', align_corners=True)
res5, _, _ = self.affm_4(layer1_0, res5,
F.interpolate(hffm, size_layer1_0, mode='bilinear', align_corners=True), 2)
output = self.dsn1(res5)
if self.aux:
auxout = self.dsn2(aux_feature)
# auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True)
# outputs.append(auxout)
size = x.size()[2:]
pred, pred_aux = output, auxout
pred = F.interpolate(pred, size, mode='bilinear', align_corners=True)
pred_aux = F.interpolate(pred_aux, size, mode='bilinear', align_corners=True)
return pred
return pred, pred_aux
if __name__ == '__main__':
model = CDnetV2(num_classes=3)
fake_image = torch.rand(2, 3, 256, 256)
output = model(fake_image)
for out in output:
print(out.shape)
# torch.Size([2, 3, 256, 256])
# torch.Size([2, 3, 256, 256])