English
File size: 28,563 Bytes
63a9590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
# 论文地址:https://arxiv.org/abs/2407.07365
#
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import os

import numpy as np
import torch
import torch._utils
import torch.nn as nn
import torch.nn.functional as F

BatchNorm2d = nn.BatchNorm2d
# BN_MOMENTUM = 0.01
relu_inplace = True
BN_MOMENTUM = 0.1
ALIGN_CORNERS = True

logger = logging.getLogger(__name__)


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


from yacs.config import CfgNode as CN
import math
from einops import rearrange

# configs for HRNet48
HRNET_48 = CN()
HRNET_48.FINAL_CONV_KERNEL = 1

HRNET_48.STAGE1 = CN()
HRNET_48.STAGE1.NUM_MODULES = 1
HRNET_48.STAGE1.NUM_BRANCHES = 1
HRNET_48.STAGE1.NUM_BLOCKS = [4]
HRNET_48.STAGE1.NUM_CHANNELS = [64]
HRNET_48.STAGE1.BLOCK = 'BOTTLENECK'
HRNET_48.STAGE1.FUSE_METHOD = 'SUM'

HRNET_48.STAGE2 = CN()
HRNET_48.STAGE2.NUM_MODULES = 1
HRNET_48.STAGE2.NUM_BRANCHES = 2
HRNET_48.STAGE2.NUM_BLOCKS = [4, 4]
HRNET_48.STAGE2.NUM_CHANNELS = [48, 96]
HRNET_48.STAGE2.BLOCK = 'BASIC'
HRNET_48.STAGE2.FUSE_METHOD = 'SUM'

HRNET_48.STAGE3 = CN()
HRNET_48.STAGE3.NUM_MODULES = 4
HRNET_48.STAGE3.NUM_BRANCHES = 3
HRNET_48.STAGE3.NUM_BLOCKS = [4, 4, 4]
HRNET_48.STAGE3.NUM_CHANNELS = [48, 96, 192]
HRNET_48.STAGE3.BLOCK = 'BASIC'
HRNET_48.STAGE3.FUSE_METHOD = 'SUM'

HRNET_48.STAGE4 = CN()
HRNET_48.STAGE4.NUM_MODULES = 3
HRNET_48.STAGE4.NUM_BRANCHES = 4
HRNET_48.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
HRNET_48.STAGE4.NUM_CHANNELS = [48, 96, 192, 384]
HRNET_48.STAGE4.BLOCK = 'BASIC'
HRNET_48.STAGE4.FUSE_METHOD = 'SUM'

HRNET_32 = CN()
HRNET_32.FINAL_CONV_KERNEL = 1

HRNET_32.STAGE1 = CN()
HRNET_32.STAGE1.NUM_MODULES = 1
HRNET_32.STAGE1.NUM_BRANCHES = 1
HRNET_32.STAGE1.NUM_BLOCKS = [4]
HRNET_32.STAGE1.NUM_CHANNELS = [64]
HRNET_32.STAGE1.BLOCK = 'BOTTLENECK'
HRNET_32.STAGE1.FUSE_METHOD = 'SUM'

HRNET_32.STAGE2 = CN()
HRNET_32.STAGE2.NUM_MODULES = 1
HRNET_32.STAGE2.NUM_BRANCHES = 2
HRNET_32.STAGE2.NUM_BLOCKS = [4, 4]
HRNET_32.STAGE2.NUM_CHANNELS = [32, 64]
HRNET_32.STAGE2.BLOCK = 'BASIC'
HRNET_32.STAGE2.FUSE_METHOD = 'SUM'

HRNET_32.STAGE3 = CN()
HRNET_32.STAGE3.NUM_MODULES = 4
HRNET_32.STAGE3.NUM_BRANCHES = 3
HRNET_32.STAGE3.NUM_BLOCKS = [4, 4, 4]
HRNET_32.STAGE3.NUM_CHANNELS = [32, 64, 128]
HRNET_32.STAGE3.BLOCK = 'BASIC'
HRNET_32.STAGE3.FUSE_METHOD = 'SUM'

HRNET_32.STAGE4 = CN()
HRNET_32.STAGE4.NUM_MODULES = 3
HRNET_32.STAGE4.NUM_BRANCHES = 4
HRNET_32.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
HRNET_32.STAGE4.NUM_CHANNELS = [32, 64, 128, 256]
HRNET_32.STAGE4.BLOCK = 'BASIC'
HRNET_32.STAGE4.FUSE_METHOD = 'SUM'

HRNET_18 = CN()
HRNET_18.FINAL_CONV_KERNEL = 1

HRNET_18.STAGE1 = CN()
HRNET_18.STAGE1.NUM_MODULES = 1
HRNET_18.STAGE1.NUM_BRANCHES = 1
HRNET_18.STAGE1.NUM_BLOCKS = [4]
HRNET_18.STAGE1.NUM_CHANNELS = [64]
HRNET_18.STAGE1.BLOCK = 'BOTTLENECK'
HRNET_18.STAGE1.FUSE_METHOD = 'SUM'

HRNET_18.STAGE2 = CN()
HRNET_18.STAGE2.NUM_MODULES = 1
HRNET_18.STAGE2.NUM_BRANCHES = 2
HRNET_18.STAGE2.NUM_BLOCKS = [4, 4]
HRNET_18.STAGE2.NUM_CHANNELS = [18, 36]
HRNET_18.STAGE2.BLOCK = 'BASIC'
HRNET_18.STAGE2.FUSE_METHOD = 'SUM'

HRNET_18.STAGE3 = CN()
HRNET_18.STAGE3.NUM_MODULES = 4
HRNET_18.STAGE3.NUM_BRANCHES = 3
HRNET_18.STAGE3.NUM_BLOCKS = [4, 4, 4]
HRNET_18.STAGE3.NUM_CHANNELS = [18, 36, 72]
HRNET_18.STAGE3.BLOCK = 'BASIC'
HRNET_18.STAGE3.FUSE_METHOD = 'SUM'

HRNET_18.STAGE4 = CN()
HRNET_18.STAGE4.NUM_MODULES = 3
HRNET_18.STAGE4.NUM_BRANCHES = 4
HRNET_18.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
HRNET_18.STAGE4.NUM_CHANNELS = [18, 36, 72, 144]
HRNET_18.STAGE4.BLOCK = 'BASIC'
HRNET_18.STAGE4.FUSE_METHOD = 'SUM'


class PPM(nn.Module):
    def __init__(self, in_dim, reduction_dim, bins):
        super(PPM, self).__init__()
        self.features = []
        for bin in bins:
            self.features.append(nn.Sequential(
                nn.AdaptiveAvgPool2d(bin),
                nn.Conv2d(in_dim, reduction_dim, kernel_size=1, bias=False),
                nn.BatchNorm2d(reduction_dim),
                nn.ReLU(inplace=True)
            ))
        self.features = nn.ModuleList(self.features)

    def forward(self, x):
        x_size = x.size()
        out = [x]
        for f in self.features:
            out.append(F.interpolate(f(x), x_size[2:], mode='bilinear', align_corners=True))
        return torch.cat(out, 1)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=relu_inplace)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        out = out + residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
                               bias=False)
        self.bn3 = BatchNorm2d(planes * self.expansion,
                               momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=relu_inplace)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)
            # att = self.downsample(att)
        out = out + residual
        out = self.relu(out)

        return out


class HighResolutionModule(nn.Module):
    def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
                 num_channels, fuse_method, multi_scale_output=True):
        super(HighResolutionModule, self).__init__()
        self._check_branches(
            num_branches, blocks, num_blocks, num_inchannels, num_channels)

        self.num_inchannels = num_inchannels
        self.fuse_method = fuse_method
        self.num_branches = num_branches

        self.multi_scale_output = multi_scale_output

        self.branches = self._make_branches(
            num_branches, blocks, num_blocks, num_channels)
        self.fuse_layers = self._make_fuse_layers()
        self.relu = nn.ReLU(inplace=relu_inplace)

    def _check_branches(self, num_branches, blocks, num_blocks,
                        num_inchannels, num_channels):
        if num_branches != len(num_blocks):
            error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
                num_branches, len(num_blocks))
            logger.error(error_msg)
            raise ValueError(error_msg)

        if num_branches != len(num_channels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
                num_branches, len(num_channels))
            logger.error(error_msg)
            raise ValueError(error_msg)

        if num_branches != len(num_inchannels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
                num_branches, len(num_inchannels))
            logger.error(error_msg)
            raise ValueError(error_msg)

    def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
                         stride=1):
        downsample = None
        if stride != 1 or \
                self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.num_inchannels[branch_index],
                          num_channels[branch_index] * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm2d(num_channels[branch_index] * block.expansion,
                            momentum=BN_MOMENTUM),
            )

        layers = []
        layers.append(block(self.num_inchannels[branch_index],
                            num_channels[branch_index], stride, downsample))
        self.num_inchannels[branch_index] = \
            num_channels[branch_index] * block.expansion
        for i in range(1, num_blocks[branch_index]):
            layers.append(block(self.num_inchannels[branch_index],
                                num_channels[branch_index]))

        return nn.Sequential(*layers)

    # 创建平行层
    def _make_branches(self, num_branches, block, num_blocks, num_channels):
        branches = []

        for i in range(num_branches):
            branches.append(
                self._make_one_branch(i, block, num_blocks, num_channels))

        return nn.ModuleList(branches)

    def _make_fuse_layers(self):
        if self.num_branches == 1:
            return None
        num_branches = self.num_branches  # 3
        num_inchannels = self.num_inchannels  # [48, 96, 192]
        fuse_layers = []
        for i in range(num_branches if self.multi_scale_output else 1):
            fuse_layer = []
            for j in range(num_branches):
                if j > i:
                    fuse_layer.append(nn.Sequential(
                        nn.Conv2d(num_inchannels[j],
                                  num_inchannels[i],
                                  1,
                                  1,
                                  0,
                                  bias=False),
                        BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM)))
                elif j == i:
                    fuse_layer.append(None)
                else:
                    conv3x3s = []
                    for k in range(i - j):
                        if k == i - j - 1:
                            num_outchannels_conv3x3 = num_inchannels[i]
                            conv3x3s.append(nn.Sequential(
                                nn.Conv2d(num_inchannels[j],
                                          num_outchannels_conv3x3,
                                          3, 2, 1, bias=False),
                                BatchNorm2d(num_outchannels_conv3x3,
                                            momentum=BN_MOMENTUM)))
                        else:
                            num_outchannels_conv3x3 = num_inchannels[j]
                            conv3x3s.append(nn.Sequential(
                                nn.Conv2d(num_inchannels[j],
                                          num_outchannels_conv3x3,
                                          3, 2, 1, bias=False),
                                BatchNorm2d(num_outchannels_conv3x3,
                                            momentum=BN_MOMENTUM),
                                nn.ReLU(inplace=relu_inplace)))
                    fuse_layer.append(nn.Sequential(*conv3x3s))
            fuse_layers.append(nn.ModuleList(fuse_layer))

        return nn.ModuleList(fuse_layers)

    def get_num_inchannels(self):
        return self.num_inchannels

    def forward(self, x):
        if self.num_branches == 1:
            return [self.branches[0](x[0])]

        for i in range(self.num_branches):
            x[i] = self.branches[i](x[i])

        x_fuse = []
        for i in range(len(self.fuse_layers)):
            y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
            for j in range(1, self.num_branches):
                if i == j:
                    y = y + x[j]
                elif j > i:
                    width_output = x[i].shape[-1]
                    height_output = x[i].shape[-2]
                    y = y + F.interpolate(
                        self.fuse_layers[i][j](x[j]),
                        size=[height_output, width_output],
                        mode='bilinear', align_corners=ALIGN_CORNERS)
                else:
                    y = y + self.fuse_layers[i][j](x[j])
            x_fuse.append(self.relu(y))

        return x_fuse


blocks_dict = {
    'BASIC': BasicBlock,
    'BOTTLENECK': Bottleneck
}


class HRCloudNet(nn.Module):

    def __init__(self, in_channels=3,num_classes=2, base_c=48, **kwargs):
        global ALIGN_CORNERS
        extra = HRNET_48
        super(HRCloudNet, self).__init__()
        ALIGN_CORNERS = True
        # ALIGN_CORNERS = config.MODEL.ALIGN_CORNERS
        self.num_classes = num_classes
        # stem net
        self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1,
                               bias=False)
        self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,
                               bias=False)
        self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=relu_inplace)

        self.stage1_cfg = extra['STAGE1']
        num_channels = self.stage1_cfg['NUM_CHANNELS'][0]
        block = blocks_dict[self.stage1_cfg['BLOCK']]
        num_blocks = self.stage1_cfg['NUM_BLOCKS'][0]
        self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)
        stage1_out_channel = block.expansion * num_channels

        self.stage2_cfg = extra['STAGE2']
        num_channels = self.stage2_cfg['NUM_CHANNELS']
        block = blocks_dict[self.stage2_cfg['BLOCK']]
        num_channels = [
            num_channels[i] * block.expansion for i in range(len(num_channels))]
        self.transition1 = self._make_transition_layer(
            [stage1_out_channel], num_channels)
        self.stage2, pre_stage_channels = self._make_stage(
            self.stage2_cfg, num_channels)

        self.stage3_cfg = extra['STAGE3']
        num_channels = self.stage3_cfg['NUM_CHANNELS']
        block = blocks_dict[self.stage3_cfg['BLOCK']]
        num_channels = [
            num_channels[i] * block.expansion for i in range(len(num_channels))]
        self.transition2 = self._make_transition_layer(
            pre_stage_channels, num_channels)  # 只在pre[-1]与cur[-1]之间下采样?
        self.stage3, pre_stage_channels = self._make_stage(
            self.stage3_cfg, num_channels)

        self.stage4_cfg = extra['STAGE4']
        num_channels = self.stage4_cfg['NUM_CHANNELS']
        block = blocks_dict[self.stage4_cfg['BLOCK']]
        num_channels = [
            num_channels[i] * block.expansion for i in range(len(num_channels))]
        self.transition3 = self._make_transition_layer(
            pre_stage_channels, num_channels)
        self.stage4, pre_stage_channels = self._make_stage(
            self.stage4_cfg, num_channels, multi_scale_output=True)
        self.out_conv = OutConv(base_c, num_classes)
        last_inp_channels = int(np.sum(pre_stage_channels))

        self.corr = Corr(nclass=2)
        self.proj = nn.Sequential(
            # 512 32
            nn.Conv2d(720, 48, kernel_size=3, stride=1, padding=1, bias=True),
            nn.BatchNorm2d(48),
            nn.ReLU(inplace=True),
            nn.Dropout2d(0.1),
        )
        # self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear)
        self.up2 = Up(base_c * 8, base_c * 4, True)
        self.up3 = Up(base_c * 4, base_c * 2, True)
        self.up4 = Up(base_c * 2, base_c, True)
        fea_dim = 720
        bins = (1, 2, 3, 6)
        self.ppm = PPM(fea_dim, int(fea_dim / len(bins)), bins)
        fea_dim *= 2
        self.cls = nn.Sequential(
            nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Dropout2d(p=0.1),
            nn.Conv2d(512, num_classes, kernel_size=1)
        )

    '''
    转换层的作用有两种情况:

    当前分支数小于之前分支数时,仅对前几个分支进行通道数调整。
    当前分支数大于之前分支数时,新建一些转换层,对多余的分支进行下采样,改变通道数以适应后续的连接。
    最终,这些转换层会被组合成一个 nn.ModuleList 对象,并在网络的构建过程中使用。
    这有助于确保每个分支的通道数在不同阶段之间能够正确匹配,以便进行特征的融合和连接
    '''

    def _make_transition_layer(
            self, num_channels_pre_layer, num_channels_cur_layer):
        # 现在的分支数
        num_branches_cur = len(num_channels_cur_layer)  # 3
        # 处理前的分支数
        num_branches_pre = len(num_channels_pre_layer)  # 2

        transition_layers = []
        for i in range(num_branches_cur):
            # 如果当前分支数小于之前分支数,仅针对第一到第二阶段
            if i < num_branches_pre:
                # 如果对应层的通道数不一致,则进行转化(
                if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
                    transition_layers.append(nn.Sequential(

                        nn.Conv2d(num_channels_pre_layer[i],
                                  num_channels_cur_layer[i],
                                  3,
                                  1,
                                  1,
                                  bias=False),
                        BatchNorm2d(
                            num_channels_cur_layer[i], momentum=BN_MOMENTUM),
                        nn.ReLU(inplace=relu_inplace)))
                else:
                    transition_layers.append(None)
            else:  # 在新建层下采样改变通道数
                conv3x3s = []
                for j in range(i + 1 - num_branches_pre):  # 3
                    inchannels = num_channels_pre_layer[-1]
                    outchannels = num_channels_cur_layer[i] \
                        if j == i - num_branches_pre else inchannels
                    conv3x3s.append(nn.Sequential(
                        nn.Conv2d(
                            inchannels, outchannels, 3, 2, 1, bias=False),
                        BatchNorm2d(outchannels, momentum=BN_MOMENTUM),
                        nn.ReLU(inplace=relu_inplace)))
                transition_layers.append(nn.Sequential(*conv3x3s))

        return nn.ModuleList(transition_layers)

    '''
    _make_layer 函数的主要作用是创建一个由多个相同类型的残差块(Residual Block)组成的层。
    '''

    def _make_layer(self, block, inplanes, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
            )

        layers = []
        layers.append(block(inplanes, planes, stride, downsample))
        inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(inplanes, planes))

        return nn.Sequential(*layers)

    # 多尺度融合
    def _make_stage(self, layer_config, num_inchannels,
                    multi_scale_output=True):
        num_modules = layer_config['NUM_MODULES']
        num_branches = layer_config['NUM_BRANCHES']
        num_blocks = layer_config['NUM_BLOCKS']
        num_channels = layer_config['NUM_CHANNELS']
        block = blocks_dict[layer_config['BLOCK']]
        fuse_method = layer_config['FUSE_METHOD']

        modules = []
        for i in range(num_modules):  # 重复4次
            # multi_scale_output is only used last module
            if not multi_scale_output and i == num_modules - 1:
                reset_multi_scale_output = False
            else:
                reset_multi_scale_output = True
            modules.append(
                HighResolutionModule(num_branches,
                                     block,
                                     num_blocks,
                                     num_inchannels,
                                     num_channels,
                                     fuse_method,
                                     reset_multi_scale_output)
            )
            num_inchannels = modules[-1].get_num_inchannels()

        return nn.Sequential(*modules), num_inchannels

    def forward(self, input, need_fp=True, use_corr=True):
        # from ipdb import set_trace
        # set_trace()
        x = self.conv1(input)
        x = self.bn1(x)
        x = self.relu(x)
        # x_176 = x
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)
        x = self.layer1(x)

        x_list = []
        for i in range(self.stage2_cfg['NUM_BRANCHES']):  # 2
            if self.transition1[i] is not None:
                x_list.append(self.transition1[i](x))
            else:
                x_list.append(x)
        y_list = self.stage2(x_list)
        # Y1
        x_list = []
        for i in range(self.stage3_cfg['NUM_BRANCHES']):
            if self.transition2[i] is not None:
                if i < self.stage2_cfg['NUM_BRANCHES']:
                    x_list.append(self.transition2[i](y_list[i]))
                else:
                    x_list.append(self.transition2[i](y_list[-1]))
            else:
                x_list.append(y_list[i])
        y_list = self.stage3(x_list)

        x_list = []
        for i in range(self.stage4_cfg['NUM_BRANCHES']):
            if self.transition3[i] is not None:
                if i < self.stage3_cfg['NUM_BRANCHES']:
                    x_list.append(self.transition3[i](y_list[i]))
                else:
                    x_list.append(self.transition3[i](y_list[-1]))
            else:
                x_list.append(y_list[i])
        x = self.stage4(x_list)
        dict_return = {}
        # Upsampling
        x0_h, x0_w = x[0].size(2), x[0].size(3)

        x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS)
        # x = self.stage3_(x)
        x[2] = self.up2(x[3], x[2])
        x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS)
        # x = self.stage2_(x)
        x[1] = self.up3(x[2], x[1])
        x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS)
        x[0] = self.up4(x[1], x[0])
        xk = torch.cat([x[0], x1, x2, x3], 1)
        # PPM
        feat = self.ppm(xk)
        x = self.cls(feat)
        # fp分支
        if need_fp:
            logits = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True)
            # logits = self.out_conv(torch.cat((x, nn.Dropout2d(0.5)(x))))
            out = logits
            out_fp = logits
            if use_corr:
                proj_feats = self.proj(xk)
                corr_out = self.corr(proj_feats, out)
                corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True)
                dict_return['corr_out'] = corr_out
            dict_return['out'] = out
            dict_return['out_fp'] = out_fp

            return dict_return['out']

        out = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True)
        if use_corr:  # True
            proj_feats = self.proj(xk)
            # 计算
            corr_out = self.corr(proj_feats, out)
            corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True)
            dict_return['corr_out'] = corr_out
        dict_return['out'] = out
        return dict_return['out']
        # return x

    def init_weights(self, pretrained='', ):
        logger.info('=> init weights from normal distribution')
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.normal_(m.weight, std=0.001)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
        if os.path.isfile(pretrained):
            pretrained_dict = torch.load(pretrained)
            logger.info('=> loading pretrained model {}'.format(pretrained))
            model_dict = self.state_dict()
            pretrained_dict = {k: v for k, v in pretrained_dict.items()
                               if k in model_dict.keys()}
            for k, _ in pretrained_dict.items():
                logger.info(
                    '=> loading {} pretrained model {}'.format(k, pretrained))
            model_dict.update(pretrained_dict)
            self.load_state_dict(model_dict)


class OutConv(nn.Sequential):
    def __init__(self, in_channels, num_classes):
        super(OutConv, self).__init__(
            nn.Conv2d(720, num_classes, kernel_size=1)
        )


class DoubleConv(nn.Sequential):
    def __init__(self, in_channels, out_channels, mid_channels=None):
        if mid_channels is None:
            mid_channels = out_channels
        super(DoubleConv, self).__init__(
            nn.Conv2d(in_channels + out_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )


class Up(nn.Module):
    def __init__(self, in_channels, out_channels, bilinear=True):
        super(Up, self).__init__()
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
        x1 = self.up(x1)
        # [N, C, H, W]
        diff_y = x2.size()[2] - x1.size()[2]
        diff_x = x2.size()[3] - x1.size()[3]

        # padding_left, padding_right, padding_top, padding_bottom
        x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,
                        diff_y // 2, diff_y - diff_y // 2])

        x = torch.cat([x2, x1], dim=1)
        x = self.conv(x)
        return x


class Corr(nn.Module):
    def __init__(self, nclass=2):
        super(Corr, self).__init__()
        self.nclass = nclass
        self.conv1 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True)
        self.conv2 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True)

    def forward(self, feature_in, out):
        # in torch.Size([4, 32, 22, 22])
        # out = [4 2 352 352]
        h_in, w_in = math.ceil(feature_in.shape[2] / (1)), math.ceil(feature_in.shape[3] / (1))
        out = F.interpolate(out.detach(), (h_in, w_in), mode='bilinear', align_corners=True)
        feature = F.interpolate(feature_in, (h_in, w_in), mode='bilinear', align_corners=True)
        f1 = rearrange(self.conv1(feature), 'n c h w -> n c (h w)')
        f2 = rearrange(self.conv2(feature), 'n c h w -> n c (h w)')
        out_temp = rearrange(out, 'n c h w -> n c (h w)')
        corr_map = torch.matmul(f1.transpose(1, 2), f2) / torch.sqrt(torch.tensor(f1.shape[1]).float())
        corr_map = F.softmax(corr_map, dim=-1)
        # out_temp 2 2 484
        # corr_map 4 484 484
        out = rearrange(torch.matmul(out_temp, corr_map), 'n c (h w) -> n c h w', h=h_in, w=w_in)
        # out torch.Size([4, 2, 22, 22])
        return out


if __name__ == '__main__':
    input = torch.randn(4, 3, 352, 352)
    cloud = HRCloudNet(num_classes=2)
    output = cloud(input)
    print(output.shape)
    # torch.Size([4, 2, 352, 352]) torch.Size([4, 2, 352, 352]) torch.Size([4, 2, 352, 352])