File size: 28,563 Bytes
63a9590 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
# 论文地址:https://arxiv.org/abs/2407.07365
#
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import os
import numpy as np
import torch
import torch._utils
import torch.nn as nn
import torch.nn.functional as F
BatchNorm2d = nn.BatchNorm2d
# BN_MOMENTUM = 0.01
relu_inplace = True
BN_MOMENTUM = 0.1
ALIGN_CORNERS = True
logger = logging.getLogger(__name__)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
from yacs.config import CfgNode as CN
import math
from einops import rearrange
# configs for HRNet48
HRNET_48 = CN()
HRNET_48.FINAL_CONV_KERNEL = 1
HRNET_48.STAGE1 = CN()
HRNET_48.STAGE1.NUM_MODULES = 1
HRNET_48.STAGE1.NUM_BRANCHES = 1
HRNET_48.STAGE1.NUM_BLOCKS = [4]
HRNET_48.STAGE1.NUM_CHANNELS = [64]
HRNET_48.STAGE1.BLOCK = 'BOTTLENECK'
HRNET_48.STAGE1.FUSE_METHOD = 'SUM'
HRNET_48.STAGE2 = CN()
HRNET_48.STAGE2.NUM_MODULES = 1
HRNET_48.STAGE2.NUM_BRANCHES = 2
HRNET_48.STAGE2.NUM_BLOCKS = [4, 4]
HRNET_48.STAGE2.NUM_CHANNELS = [48, 96]
HRNET_48.STAGE2.BLOCK = 'BASIC'
HRNET_48.STAGE2.FUSE_METHOD = 'SUM'
HRNET_48.STAGE3 = CN()
HRNET_48.STAGE3.NUM_MODULES = 4
HRNET_48.STAGE3.NUM_BRANCHES = 3
HRNET_48.STAGE3.NUM_BLOCKS = [4, 4, 4]
HRNET_48.STAGE3.NUM_CHANNELS = [48, 96, 192]
HRNET_48.STAGE3.BLOCK = 'BASIC'
HRNET_48.STAGE3.FUSE_METHOD = 'SUM'
HRNET_48.STAGE4 = CN()
HRNET_48.STAGE4.NUM_MODULES = 3
HRNET_48.STAGE4.NUM_BRANCHES = 4
HRNET_48.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
HRNET_48.STAGE4.NUM_CHANNELS = [48, 96, 192, 384]
HRNET_48.STAGE4.BLOCK = 'BASIC'
HRNET_48.STAGE4.FUSE_METHOD = 'SUM'
HRNET_32 = CN()
HRNET_32.FINAL_CONV_KERNEL = 1
HRNET_32.STAGE1 = CN()
HRNET_32.STAGE1.NUM_MODULES = 1
HRNET_32.STAGE1.NUM_BRANCHES = 1
HRNET_32.STAGE1.NUM_BLOCKS = [4]
HRNET_32.STAGE1.NUM_CHANNELS = [64]
HRNET_32.STAGE1.BLOCK = 'BOTTLENECK'
HRNET_32.STAGE1.FUSE_METHOD = 'SUM'
HRNET_32.STAGE2 = CN()
HRNET_32.STAGE2.NUM_MODULES = 1
HRNET_32.STAGE2.NUM_BRANCHES = 2
HRNET_32.STAGE2.NUM_BLOCKS = [4, 4]
HRNET_32.STAGE2.NUM_CHANNELS = [32, 64]
HRNET_32.STAGE2.BLOCK = 'BASIC'
HRNET_32.STAGE2.FUSE_METHOD = 'SUM'
HRNET_32.STAGE3 = CN()
HRNET_32.STAGE3.NUM_MODULES = 4
HRNET_32.STAGE3.NUM_BRANCHES = 3
HRNET_32.STAGE3.NUM_BLOCKS = [4, 4, 4]
HRNET_32.STAGE3.NUM_CHANNELS = [32, 64, 128]
HRNET_32.STAGE3.BLOCK = 'BASIC'
HRNET_32.STAGE3.FUSE_METHOD = 'SUM'
HRNET_32.STAGE4 = CN()
HRNET_32.STAGE4.NUM_MODULES = 3
HRNET_32.STAGE4.NUM_BRANCHES = 4
HRNET_32.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
HRNET_32.STAGE4.NUM_CHANNELS = [32, 64, 128, 256]
HRNET_32.STAGE4.BLOCK = 'BASIC'
HRNET_32.STAGE4.FUSE_METHOD = 'SUM'
HRNET_18 = CN()
HRNET_18.FINAL_CONV_KERNEL = 1
HRNET_18.STAGE1 = CN()
HRNET_18.STAGE1.NUM_MODULES = 1
HRNET_18.STAGE1.NUM_BRANCHES = 1
HRNET_18.STAGE1.NUM_BLOCKS = [4]
HRNET_18.STAGE1.NUM_CHANNELS = [64]
HRNET_18.STAGE1.BLOCK = 'BOTTLENECK'
HRNET_18.STAGE1.FUSE_METHOD = 'SUM'
HRNET_18.STAGE2 = CN()
HRNET_18.STAGE2.NUM_MODULES = 1
HRNET_18.STAGE2.NUM_BRANCHES = 2
HRNET_18.STAGE2.NUM_BLOCKS = [4, 4]
HRNET_18.STAGE2.NUM_CHANNELS = [18, 36]
HRNET_18.STAGE2.BLOCK = 'BASIC'
HRNET_18.STAGE2.FUSE_METHOD = 'SUM'
HRNET_18.STAGE3 = CN()
HRNET_18.STAGE3.NUM_MODULES = 4
HRNET_18.STAGE3.NUM_BRANCHES = 3
HRNET_18.STAGE3.NUM_BLOCKS = [4, 4, 4]
HRNET_18.STAGE3.NUM_CHANNELS = [18, 36, 72]
HRNET_18.STAGE3.BLOCK = 'BASIC'
HRNET_18.STAGE3.FUSE_METHOD = 'SUM'
HRNET_18.STAGE4 = CN()
HRNET_18.STAGE4.NUM_MODULES = 3
HRNET_18.STAGE4.NUM_BRANCHES = 4
HRNET_18.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
HRNET_18.STAGE4.NUM_CHANNELS = [18, 36, 72, 144]
HRNET_18.STAGE4.BLOCK = 'BASIC'
HRNET_18.STAGE4.FUSE_METHOD = 'SUM'
class PPM(nn.Module):
def __init__(self, in_dim, reduction_dim, bins):
super(PPM, self).__init__()
self.features = []
for bin in bins:
self.features.append(nn.Sequential(
nn.AdaptiveAvgPool2d(bin),
nn.Conv2d(in_dim, reduction_dim, kernel_size=1, bias=False),
nn.BatchNorm2d(reduction_dim),
nn.ReLU(inplace=True)
))
self.features = nn.ModuleList(self.features)
def forward(self, x):
x_size = x.size()
out = [x]
for f in self.features:
out.append(F.interpolate(f(x), x_size[2:], mode='bilinear', align_corners=True))
return torch.cat(out, 1)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=relu_inplace)
self.conv2 = conv3x3(planes, planes)
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out = out + residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
bias=False)
self.bn3 = BatchNorm2d(planes * self.expansion,
momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=relu_inplace)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
# att = self.downsample(att)
out = out + residual
out = self.relu(out)
return out
class HighResolutionModule(nn.Module):
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
num_channels, fuse_method, multi_scale_output=True):
super(HighResolutionModule, self).__init__()
self._check_branches(
num_branches, blocks, num_blocks, num_inchannels, num_channels)
self.num_inchannels = num_inchannels
self.fuse_method = fuse_method
self.num_branches = num_branches
self.multi_scale_output = multi_scale_output
self.branches = self._make_branches(
num_branches, blocks, num_blocks, num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(inplace=relu_inplace)
def _check_branches(self, num_branches, blocks, num_blocks,
num_inchannels, num_channels):
if num_branches != len(num_blocks):
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
num_branches, len(num_blocks))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
num_branches, len(num_channels))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_inchannels):
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
num_branches, len(num_inchannels))
logger.error(error_msg)
raise ValueError(error_msg)
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
stride=1):
downsample = None
if stride != 1 or \
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.num_inchannels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm2d(num_channels[branch_index] * block.expansion,
momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index], stride, downsample))
self.num_inchannels[branch_index] = \
num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index]))
return nn.Sequential(*layers)
# 创建平行层
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(
self._make_one_branch(i, block, num_blocks, num_channels))
return nn.ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches # 3
num_inchannels = self.num_inchannels # [48, 96, 192]
fuse_layers = []
for i in range(num_branches if self.multi_scale_output else 1):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_inchannels[i],
1,
1,
0,
bias=False),
BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM)))
elif j == i:
fuse_layer.append(None)
else:
conv3x3s = []
for k in range(i - j):
if k == i - j - 1:
num_outchannels_conv3x3 = num_inchannels[i]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False),
BatchNorm2d(num_outchannels_conv3x3,
momentum=BN_MOMENTUM)))
else:
num_outchannels_conv3x3 = num_inchannels[j]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False),
BatchNorm2d(num_outchannels_conv3x3,
momentum=BN_MOMENTUM),
nn.ReLU(inplace=relu_inplace)))
fuse_layer.append(nn.Sequential(*conv3x3s))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def get_num_inchannels(self):
return self.num_inchannels
def forward(self, x):
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
for j in range(1, self.num_branches):
if i == j:
y = y + x[j]
elif j > i:
width_output = x[i].shape[-1]
height_output = x[i].shape[-2]
y = y + F.interpolate(
self.fuse_layers[i][j](x[j]),
size=[height_output, width_output],
mode='bilinear', align_corners=ALIGN_CORNERS)
else:
y = y + self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
blocks_dict = {
'BASIC': BasicBlock,
'BOTTLENECK': Bottleneck
}
class HRCloudNet(nn.Module):
def __init__(self, in_channels=3,num_classes=2, base_c=48, **kwargs):
global ALIGN_CORNERS
extra = HRNET_48
super(HRCloudNet, self).__init__()
ALIGN_CORNERS = True
# ALIGN_CORNERS = config.MODEL.ALIGN_CORNERS
self.num_classes = num_classes
# stem net
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=relu_inplace)
self.stage1_cfg = extra['STAGE1']
num_channels = self.stage1_cfg['NUM_CHANNELS'][0]
block = blocks_dict[self.stage1_cfg['BLOCK']]
num_blocks = self.stage1_cfg['NUM_BLOCKS'][0]
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)
stage1_out_channel = block.expansion * num_channels
self.stage2_cfg = extra['STAGE2']
num_channels = self.stage2_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage2_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition1 = self._make_transition_layer(
[stage1_out_channel], num_channels)
self.stage2, pre_stage_channels = self._make_stage(
self.stage2_cfg, num_channels)
self.stage3_cfg = extra['STAGE3']
num_channels = self.stage3_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage3_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition2 = self._make_transition_layer(
pre_stage_channels, num_channels) # 只在pre[-1]与cur[-1]之间下采样?
self.stage3, pre_stage_channels = self._make_stage(
self.stage3_cfg, num_channels)
self.stage4_cfg = extra['STAGE4']
num_channels = self.stage4_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage4_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition3 = self._make_transition_layer(
pre_stage_channels, num_channels)
self.stage4, pre_stage_channels = self._make_stage(
self.stage4_cfg, num_channels, multi_scale_output=True)
self.out_conv = OutConv(base_c, num_classes)
last_inp_channels = int(np.sum(pre_stage_channels))
self.corr = Corr(nclass=2)
self.proj = nn.Sequential(
# 512 32
nn.Conv2d(720, 48, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(48),
nn.ReLU(inplace=True),
nn.Dropout2d(0.1),
)
# self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear)
self.up2 = Up(base_c * 8, base_c * 4, True)
self.up3 = Up(base_c * 4, base_c * 2, True)
self.up4 = Up(base_c * 2, base_c, True)
fea_dim = 720
bins = (1, 2, 3, 6)
self.ppm = PPM(fea_dim, int(fea_dim / len(bins)), bins)
fea_dim *= 2
self.cls = nn.Sequential(
nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Dropout2d(p=0.1),
nn.Conv2d(512, num_classes, kernel_size=1)
)
'''
转换层的作用有两种情况:
当前分支数小于之前分支数时,仅对前几个分支进行通道数调整。
当前分支数大于之前分支数时,新建一些转换层,对多余的分支进行下采样,改变通道数以适应后续的连接。
最终,这些转换层会被组合成一个 nn.ModuleList 对象,并在网络的构建过程中使用。
这有助于确保每个分支的通道数在不同阶段之间能够正确匹配,以便进行特征的融合和连接
'''
def _make_transition_layer(
self, num_channels_pre_layer, num_channels_cur_layer):
# 现在的分支数
num_branches_cur = len(num_channels_cur_layer) # 3
# 处理前的分支数
num_branches_pre = len(num_channels_pre_layer) # 2
transition_layers = []
for i in range(num_branches_cur):
# 如果当前分支数小于之前分支数,仅针对第一到第二阶段
if i < num_branches_pre:
# 如果对应层的通道数不一致,则进行转化(
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(nn.Sequential(
nn.Conv2d(num_channels_pre_layer[i],
num_channels_cur_layer[i],
3,
1,
1,
bias=False),
BatchNorm2d(
num_channels_cur_layer[i], momentum=BN_MOMENTUM),
nn.ReLU(inplace=relu_inplace)))
else:
transition_layers.append(None)
else: # 在新建层下采样改变通道数
conv3x3s = []
for j in range(i + 1 - num_branches_pre): # 3
inchannels = num_channels_pre_layer[-1]
outchannels = num_channels_cur_layer[i] \
if j == i - num_branches_pre else inchannels
conv3x3s.append(nn.Sequential(
nn.Conv2d(
inchannels, outchannels, 3, 2, 1, bias=False),
BatchNorm2d(outchannels, momentum=BN_MOMENTUM),
nn.ReLU(inplace=relu_inplace)))
transition_layers.append(nn.Sequential(*conv3x3s))
return nn.ModuleList(transition_layers)
'''
_make_layer 函数的主要作用是创建一个由多个相同类型的残差块(Residual Block)组成的层。
'''
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(inplanes, planes, stride, downsample))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(inplanes, planes))
return nn.Sequential(*layers)
# 多尺度融合
def _make_stage(self, layer_config, num_inchannels,
multi_scale_output=True):
num_modules = layer_config['NUM_MODULES']
num_branches = layer_config['NUM_BRANCHES']
num_blocks = layer_config['NUM_BLOCKS']
num_channels = layer_config['NUM_CHANNELS']
block = blocks_dict[layer_config['BLOCK']]
fuse_method = layer_config['FUSE_METHOD']
modules = []
for i in range(num_modules): # 重复4次
# multi_scale_output is only used last module
if not multi_scale_output and i == num_modules - 1:
reset_multi_scale_output = False
else:
reset_multi_scale_output = True
modules.append(
HighResolutionModule(num_branches,
block,
num_blocks,
num_inchannels,
num_channels,
fuse_method,
reset_multi_scale_output)
)
num_inchannels = modules[-1].get_num_inchannels()
return nn.Sequential(*modules), num_inchannels
def forward(self, input, need_fp=True, use_corr=True):
# from ipdb import set_trace
# set_trace()
x = self.conv1(input)
x = self.bn1(x)
x = self.relu(x)
# x_176 = x
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['NUM_BRANCHES']): # 2
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
# Y1
x_list = []
for i in range(self.stage3_cfg['NUM_BRANCHES']):
if self.transition2[i] is not None:
if i < self.stage2_cfg['NUM_BRANCHES']:
x_list.append(self.transition2[i](y_list[i]))
else:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.stage4_cfg['NUM_BRANCHES']):
if self.transition3[i] is not None:
if i < self.stage3_cfg['NUM_BRANCHES']:
x_list.append(self.transition3[i](y_list[i]))
else:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
x = self.stage4(x_list)
dict_return = {}
# Upsampling
x0_h, x0_w = x[0].size(2), x[0].size(3)
x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS)
# x = self.stage3_(x)
x[2] = self.up2(x[3], x[2])
x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS)
# x = self.stage2_(x)
x[1] = self.up3(x[2], x[1])
x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS)
x[0] = self.up4(x[1], x[0])
xk = torch.cat([x[0], x1, x2, x3], 1)
# PPM
feat = self.ppm(xk)
x = self.cls(feat)
# fp分支
if need_fp:
logits = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True)
# logits = self.out_conv(torch.cat((x, nn.Dropout2d(0.5)(x))))
out = logits
out_fp = logits
if use_corr:
proj_feats = self.proj(xk)
corr_out = self.corr(proj_feats, out)
corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True)
dict_return['corr_out'] = corr_out
dict_return['out'] = out
dict_return['out_fp'] = out_fp
return dict_return['out']
out = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True)
if use_corr: # True
proj_feats = self.proj(xk)
# 计算
corr_out = self.corr(proj_feats, out)
corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True)
dict_return['corr_out'] = corr_out
dict_return['out'] = out
return dict_return['out']
# return x
def init_weights(self, pretrained='', ):
logger.info('=> init weights from normal distribution')
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.001)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if os.path.isfile(pretrained):
pretrained_dict = torch.load(pretrained)
logger.info('=> loading pretrained model {}'.format(pretrained))
model_dict = self.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items()
if k in model_dict.keys()}
for k, _ in pretrained_dict.items():
logger.info(
'=> loading {} pretrained model {}'.format(k, pretrained))
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
class OutConv(nn.Sequential):
def __init__(self, in_channels, num_classes):
super(OutConv, self).__init__(
nn.Conv2d(720, num_classes, kernel_size=1)
)
class DoubleConv(nn.Sequential):
def __init__(self, in_channels, out_channels, mid_channels=None):
if mid_channels is None:
mid_channels = out_channels
super(DoubleConv, self).__init__(
nn.Conv2d(in_channels + out_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
class Up(nn.Module):
def __init__(self, in_channels, out_channels, bilinear=True):
super(Up, self).__init__()
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
x1 = self.up(x1)
# [N, C, H, W]
diff_y = x2.size()[2] - x1.size()[2]
diff_x = x2.size()[3] - x1.size()[3]
# padding_left, padding_right, padding_top, padding_bottom
x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,
diff_y // 2, diff_y - diff_y // 2])
x = torch.cat([x2, x1], dim=1)
x = self.conv(x)
return x
class Corr(nn.Module):
def __init__(self, nclass=2):
super(Corr, self).__init__()
self.nclass = nclass
self.conv1 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True)
self.conv2 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, feature_in, out):
# in torch.Size([4, 32, 22, 22])
# out = [4 2 352 352]
h_in, w_in = math.ceil(feature_in.shape[2] / (1)), math.ceil(feature_in.shape[3] / (1))
out = F.interpolate(out.detach(), (h_in, w_in), mode='bilinear', align_corners=True)
feature = F.interpolate(feature_in, (h_in, w_in), mode='bilinear', align_corners=True)
f1 = rearrange(self.conv1(feature), 'n c h w -> n c (h w)')
f2 = rearrange(self.conv2(feature), 'n c h w -> n c (h w)')
out_temp = rearrange(out, 'n c h w -> n c (h w)')
corr_map = torch.matmul(f1.transpose(1, 2), f2) / torch.sqrt(torch.tensor(f1.shape[1]).float())
corr_map = F.softmax(corr_map, dim=-1)
# out_temp 2 2 484
# corr_map 4 484 484
out = rearrange(torch.matmul(out_temp, corr_map), 'n c (h w) -> n c h w', h=h_in, w=w_in)
# out torch.Size([4, 2, 22, 22])
return out
if __name__ == '__main__':
input = torch.randn(4, 3, 352, 352)
cloud = HRCloudNet(num_classes=2)
output = cloud(input)
print(output.shape)
# torch.Size([4, 2, 352, 352]) torch.Size([4, 2, 352, 352]) torch.Size([4, 2, 352, 352]) |