English
File size: 13,524 Bytes
63a9590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# -*- coding: utf-8 -*-
# @Time    : 2024/7/24 上午11:36
# @Author  : xiaoshun
# @Email   : [email protected]
# @File    : cdnetv1.py
# @Software: PyCharm

"""Cloud detection Network"""

"""Cloud detection Network"""

"""
This is the implementation of CDnetV1 without multi-scale inputs. This implementation uses ResNet by default.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F

affine_par = True


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False)  # change
        self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
        for i in self.bn1.parameters():
            i.requires_grad = False

        padding = dilation
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,  # change
                               padding=padding, bias=False, dilation=dilation)
        self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
        for i in self.bn2.parameters():
            i.requires_grad = False
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par)
        for i in self.bn3.parameters():
            i.requires_grad = False
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Classifier_Module(nn.Module):

    def __init__(self, dilation_series, padding_series, num_classes):
        super(Classifier_Module, self).__init__()
        self.conv2d_list = nn.ModuleList()
        for dilation, padding in zip(dilation_series, padding_series):
            self.conv2d_list.append(
                nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True))

        for m in self.conv2d_list:
            m.weight.data.normal_(0, 0.01)

    def forward(self, x):
        out = self.conv2d_list[0](x)
        for i in range(len(self.conv2d_list) - 1):
            out += self.conv2d_list[i + 1](x)
            return out


class _ConvBNReLU(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
                 dilation=1, groups=1, norm_layer=nn.BatchNorm2d):
        super(_ConvBNReLU, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
        self.bn = norm_layer(out_channels)
        self.relu = nn.ReLU(True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class _ASPPConv(nn.Module):
    def __init__(self, in_channels, out_channels, atrous_rate, norm_layer):
        super(_ASPPConv, self).__init__()
        self.block = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False),
            norm_layer(out_channels),
            nn.ReLU(True)
        )

    def forward(self, x):
        return self.block(x)


class _AsppPooling(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer):
        super(_AsppPooling, self).__init__()
        self.gap = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            norm_layer(out_channels),
            nn.ReLU(True)
        )

    def forward(self, x):
        size = x.size()[2:]
        pool = self.gap(x)
        out = F.interpolate(pool, size, mode='bilinear', align_corners=True)
        return out


class _ASPP(nn.Module):
    def __init__(self, in_channels, atrous_rates, norm_layer):
        super(_ASPP, self).__init__()
        out_channels = 512  # changed from 256
        self.b0 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            norm_layer(out_channels),
            nn.ReLU(True)
        )

        rate1, rate2, rate3 = tuple(atrous_rates)
        self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
        self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
        self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
        self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)

        # self.project = nn.Sequential(
        # nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
        # norm_layer(out_channels),
        # nn.ReLU(True),
        # nn.Dropout(0.5))
        self.dropout2d = nn.Dropout2d(0.3)

    def forward(self, x):
        feat1 = self.dropout2d(self.b0(x))
        feat2 = self.dropout2d(self.b1(x))
        feat3 = self.dropout2d(self.b2(x))
        feat4 = self.dropout2d(self.b3(x))
        feat5 = self.dropout2d(self.b4(x))
        x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
        # x = self.project(x)
        return x


class _FPM(nn.Module):
    def __init__(self, in_channels, num_classes, norm_layer=nn.BatchNorm2d):
        super(_FPM, self).__init__()
        self.aspp = _ASPP(in_channels, [6, 12, 18], norm_layer=norm_layer)
        # self.dropout2d = nn.Dropout2d(0.5)

    def forward(self, x):
        x = torch.cat((x, self.aspp(x)), dim=1)
        # x = self.dropout2d(x) # added
        return x


class BR(nn.Module):
    def __init__(self, num_classes, stride=1, downsample=None):
        super(BR, self).__init__()
        self.conv1 = conv3x3(num_classes, num_classes * 16, stride)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(num_classes * 16, num_classes)
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.relu(out)

        out = self.conv2(out)
        out += residual

        return out


class CDnetV1(nn.Module):
    def __init__(self, in_channels=3,block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True):
        self.inplanes = 64
        self.aux = aux
        super().__init__()
        # self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        # self.bn1 = nn.BatchNorm2d(64, affine = affine_par)

        self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64, affine=affine_par)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(64, affine=affine_par)
        self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(64, affine=affine_par)

        for i in self.bn1.parameters():
            i.requires_grad = False
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True)  # change
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
        # self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes)

        self.res5_con1x1 = nn.Sequential(
            nn.Conv2d(1024 + 2048, 512, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(512),
            nn.ReLU(True)
        )

        self.fpm1 = _FPM(512, num_classes)
        self.fpm2 = _FPM(512, num_classes)
        self.fpm3 = _FPM(256, num_classes)

        self.br1 = BR(num_classes)
        self.br2 = BR(num_classes)
        self.br3 = BR(num_classes)
        self.br4 = BR(num_classes)
        self.br5 = BR(num_classes)
        self.br6 = BR(num_classes)
        self.br7 = BR(num_classes)

        self.predict1 = self._predict_layer(512 * 6, num_classes)
        self.predict2 = self._predict_layer(512 * 6, num_classes)
        self.predict3 = self._predict_layer(512 * 5 + 256, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, 0.01)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
        #        for i in m.parameters():
        #            i.requires_grad = False

    def _predict_layer(self, in_channels, num_classes):
        return nn.Sequential(nn.Conv2d(in_channels, 256, kernel_size=1, stride=1, padding=0),
                             nn.BatchNorm2d(256),
                             nn.ReLU(True),
                             nn.Dropout2d(0.1),
                             nn.Conv2d(256, num_classes, kernel_size=3, stride=1, padding=1, bias=True))

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion, affine=affine_par))
        for i in downsample._modules['1'].parameters():
            i.requires_grad = False
        layers = []
        layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, dilation=dilation))

        return nn.Sequential(*layers)

    # def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
    # return block(dilation_series,padding_series,num_classes)

    def base_forward(self, x):
        x = self.relu(self.bn1(self.conv1(x)))
        size_conv1 = x.size()[2:]
        x = self.relu(self.bn2(self.conv2(x)))
        x = self.relu(self.bn3(self.conv3(x)))
        x = self.maxpool(x)
        x = self.layer1(x)
        res2 = x
        x = self.layer2(x)
        res3 = x
        x = self.layer3(x)
        res4 = x
        x = self.layer4(x)
        x = self.res5_con1x1(torch.cat([x, res4], dim=1))

        return x, res3, res2, size_conv1

    def forward(self, x):
        size = x.size()[2:]
        score1, score2, score3, size_conv1 = self.base_forward(x)
        # outputs = list()
        score1 = self.fpm1(score1)
        score1 = self.predict1(score1)  # 1/8
        predict1 = score1
        score1 = self.br1(score1)

        score2 = self.fpm2(score2)
        score2 = self.predict2(score2)  # 1/8
        predict2 = score2

        # first fusion
        score2 = self.br2(score2) + score1
        score2 = self.br3(score2)

        score3 = self.fpm3(score3)
        score3 = self.predict3(score3)  # 1/4
        predict3 = score3
        score3 = self.br4(score3)

        # second fusion
        size_score3 = score3.size()[2:]
        score3 = score3 + F.interpolate(score2, size_score3, mode='bilinear', align_corners=True)
        score3 = self.br5(score3)

        # upsampling + BR
        score3 = F.interpolate(score3, size_conv1, mode='bilinear', align_corners=True)
        score3 = self.br6(score3)
        score3 = F.interpolate(score3, size, mode='bilinear', align_corners=True)
        score3 = self.br7(score3)

        # if self.aux:
        # auxout = self.dsn(mid)
        # auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True)
        # #outputs.append(auxout)
        return score3
        # return score3, predict1, predict2, predict3


if __name__ == '__main__':
    model = CDnetV1(num_classes=21)
    fake_image = torch.randn(2, 3, 224, 224)
    outputs = model(fake_image)
    for out in outputs:
        print(out.shape)
    # torch.Size([2, 21, 224, 224])
    # torch.Size([2, 21, 29, 29])
    # torch.Size([2, 21, 29, 29])
    # torch.Size([2, 21, 57, 57])