English
File size: 10,933 Bytes
63a9590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from typing import List
from glob import glob
import numpy as np
from PIL import Image
from mmseg.models.segmentors.encoder_decoder import EncoderDecoder
import gradio as gr
import torch
import os
from models.cdnetv1 import CDnetV1
from models.cdnetv2 import CDnetV2
from models.dbnet import DBNet
from models.hrcloudnet import HRCloudNet
from models.kappamask import KappaMask
from models.mcdnet import MCDNet
from models.scnn import SCNN
from models.unetmobv2 import UNetMobV2


class CloudAdapterGradio:
    def __init__(self, device="cpu", example_inputs=None, num_classes=2, palette=None, other_model_weight_path=None):
        self.device = device
        self.example_inputs = example_inputs
        self.img_size = 256 if num_classes == 2 else 512
        self.palette = palette
        self.legend = self.html_legend(num_classes=num_classes)

        self.other_models = {
            "cdnetv1": CDnetV1(num_classes=num_classes).to(self.device),
            "cdnetv2": CDnetV2(num_classes=num_classes).to(self.device),
            "hrcloudnet": HRCloudNet(num_classes=num_classes).to(self.device),
            "mcdnet": MCDNet(in_channels=3, num_classes=num_classes).to(self.device),
            "scnn": SCNN(num_classes=num_classes).to(self.device),
            "dbnet": DBNet(img_size=self.img_size, in_channels=3, num_classes=num_classes).to(
                self.device
            ),
            "unetmobv2": UNetMobV2(num_classes=num_classes).to(self.device),
            "kappamask": KappaMask(num_classes=num_classes, in_channels=3).to(self.device)
        }
        self.name_mapping = {
            "KappaMask": "kappamask",
            "CDNetv1": "cdnetv1",
            "CDNetv2": "cdnetv2",
            "HRCloudNet": "hrcloudnet",
            "MCDNet": "mcdnet",
            "SCNN": "scnn",
            "DBNet": "dbnet",
            "UNetMobv2": "unetmobv2",
            "Cloud-Adapter": "cloud-adapter",
        }

        self.load_weights(other_model_weight_path)

        self.create_ui()

    def load_weights(self, checkpoint_path: str):
        for model_name, model in self.other_models.items():
            weight_path = os.path.join(checkpoint_path, model_name+".bin")
            weight_path = glob(weight_path)[0]
            weight = torch.load(weight_path, map_location=self.device)
            model.load_state_dict(weight)
            model.eval()
            print(f"Loaded {model_name} weights from {weight_path}")

    def html_legend(self, num_classes=2):
        if num_classes == 2:
            return """
        <div style="margin-top: 10px; text-align: left; display: flex; align-items: center; gap: 20px;justify-content: center;">
            <div style="display: flex; align-items: center;">
                <div style="width: 20px; height: 20px; background-color: rgb(79, 253, 199); margin-right: 10px; "></div>
                <span>Clear</span>
            </div>
            <div style="display: flex; align-items: center;">
                <div style="width: 20px; height: 20px; background-color: rgb(77, 2, 115); margin-right: 10px; "></div>
                <span>Cloud</span>
            </div>
        </div>
        """
        return """
        <div style="margin-top: 10px; text-align: left; display: flex; align-items: center; gap: 20px;justify-content: center;">
            <div style="display: flex; align-items: center;">
                <div style="width: 20px; height: 20px; background-color: rgb(79, 253, 199); margin-right: 10px; "></div>
                <span>Clear Sky</span>
            </div>
            <div style="display: flex; align-items: center;">
                <div style="width: 20px; height: 20px; background-color: rgb(77, 2, 115); margin-right: 10px; "></div>
                <span>Thick Cloud</span>
            </div>
            <div style="display: flex; align-items: center;">
                <div style="width: 20px; height: 20px; background-color: rgb(251, 255, 41); margin-right: 10px; "></div>
                <span>Thin Cloud</span>
            </div>
            <div style="display: flex; align-items: center;">
                <div style="width: 20px; height: 20px; background-color: rgb(221, 53, 223); margin-right: 10px; "></div>
                <span>Cloud Shadow</span>
            </div>
        </div>
"""

    def create_ui(self):
        with gr.Row():
            # 左侧:输入图片和按钮
            with gr.Column(scale=1):  # 左侧列
                in_image = gr.Image(
                    label='Input Image',
                    sources='upload',
                    elem_classes='input_image',
                    interactive=True,
                    type="pil",
                )
                with gr.Row():
                    # 增加一个下拉菜单
                    model_choice = gr.Dropdown(
                        choices=[
                            "DBNet",
                            "HRCloudNet",
                            "CDNetv2",
                            "UNetMobv2",
                            "CDNetv1",
                            "MCDNet",
                            "KappaMask",
                            "SCNN",
                        ],
                        value="DBNet",
                        label="Model",
                        elem_classes='model_type',
                    )
                    run_button = gr.Button(
                        'Run',
                        variant="primary",
                    )
                # 示例输入列表
                gr.Examples(
                    examples=self.example_inputs,
                    inputs=in_image,
                    label="Example Inputs"
                )

            # 右侧:输出图片
            with gr.Column(scale=1):  # 右侧列
                with gr.Column():
                    # 输出图片
                    out_image = gr.Image(
                        label='Output Image',
                        elem_classes='output_image',
                        interactive=False
                    )
                    # 图例
                    legend = gr.HTML(
                        value=self.legend,
                        elem_classes="output_legend",
                    )

        # 按钮点击逻辑:触发图像转换
        run_button.click(
            self.inference,
            inputs=[in_image, model_choice],
            outputs=out_image,
        )

    @torch.no_grad()
    def inference(self, image: Image.Image, model_choice: str) -> Image.Image:
        return self.simple_model_forward(image, self.name_mapping[model_choice])

    @torch.no_grad()
    def simple_model_forward(self, image: Image.Image, model_choice: str) -> Image.Image:
        """
        Simple Model Inference
        """
        ori_size = image.size
        image = image.resize((self.img_size, self.img_size),
                     resample=Image.Resampling.BILINEAR)
        image = np.array(image)
        image = (image - np.min(image)) / (np.max(image)-np.min(image))

        image = torch.from_numpy(image).unsqueeze(0).to(self.device)
        image = image.permute(0, 3, 1, 2).float()

        logits: torch.Tensor = self.other_models[model_choice].forward(image)
        pred_mask = torch.argmax(logits, dim=1).squeeze(
            0).cpu().numpy().astype(np.uint8)

        del image
        del logits
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        im = Image.fromarray(pred_mask).convert("P")
        im.putpalette(self.palette)
        return im.resize(ori_size, resample=Image.Resampling.BILINEAR)


def get_palette(dataset_name: str) -> List[int]:
    if dataset_name in ["cloudsen12_high_l1c", "cloudsen12_high_l2a"]:
        return [79, 253, 199, 77, 2, 115, 251, 255, 41, 221, 53, 223]
    if dataset_name == "l8_biome":
        return [79, 253, 199, 221, 53, 223, 251, 255, 41, 77, 2, 115]
    if dataset_name in ["gf12ms_whu_gf1", "gf12ms_whu_gf2", "hrc_whu"]:
        return [79, 253, 199, 77, 2, 115]
    raise Exception("dataset_name not supported")


if __name__ == '__main__':
    title = 'Cloud Segmentation for Remote Sensing Images'
    custom_css = """
h1 {
    text-align: center;
    font-size: 24px;
    font-weight: bold;
    margin-bottom: 20px;
}
"""
    hrc_whu_examples = glob("example_inputs/hrc_whu/*")
    gf1_examples = glob("example_inputs/gf1/*")
    gf2_examples = glob("example_inputs/gf2/*")
    l1c_examples = glob("example_inputs/l1c/*")
    l2a_examples = glob("example_inputs/l2a/*")
    l8_examples = glob("example_inputs/l8/*")

    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    with gr.Blocks(analytics_enabled=False, title=title,css=custom_css) as demo:
        gr.Markdown(f'# {title}')
        with gr.Tabs():
            with gr.TabItem('Google Earth'):
                CloudAdapterGradio(
                    device=device,
                    example_inputs=hrc_whu_examples,
                    num_classes=2,
                    palette=get_palette("hrc_whu"),
                    other_model_weight_path="checkpoints/hrc_whu"
                )
            with gr.TabItem('Gaofen-1'):
                CloudAdapterGradio(
                    device=device,
                    example_inputs=gf1_examples,
                    num_classes=2,
                    palette=get_palette("gf12ms_whu_gf1"),
                    other_model_weight_path="checkpoints/gf12ms_whu_gf1"
                )
            with gr.TabItem('Gaofen-2'):
                CloudAdapterGradio(
                    device=device,
                    example_inputs=gf2_examples,
                    num_classes=2,
                    palette=get_palette("gf12ms_whu_gf2"),
                    other_model_weight_path="checkpoints/gf12ms_whu_gf2"
                )

            with gr.TabItem('Sentinel-2 (L1C)'):
                CloudAdapterGradio(
                    device=device,
                    example_inputs=l1c_examples,
                    num_classes=4,
                    palette=get_palette("cloudsen12_high_l1c"),
                    other_model_weight_path="checkpoints/cloudsen12_high_l1c"
                )
            with gr.TabItem('Sentinel-2 (L2A)'):
                CloudAdapterGradio(
                    device=device,
                    example_inputs=l2a_examples,
                    num_classes=4,
                    palette=get_palette("cloudsen12_high_l2a"),
                    other_model_weight_path="checkpoints/cloudsen12_high_l2a"
                )
            with gr.TabItem('Landsat-8'):
                CloudAdapterGradio(
                    device=device,
                    example_inputs=l8_examples,
                    num_classes=4,
                    palette=get_palette("l8_biome"),
                    other_model_weight_path="checkpoints/l8_biome"
                )

    demo.launch(share=True, debug=True)