File size: 2,732 Bytes
47dc61d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cfec65
47dc61d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# coding=utf-8

from transformers.configuration_utils import PretrainedConfig
from transformers import logging, AutoConfig
from transformers import CONFIG_MAPPING


logger = logging.get_logger(__name__)


class CenturioConfig(PretrainedConfig):
    r"""

    Based on LlavaConfig.



    Args:

        vision_config (`str`,  *optional*, timm model, defaults to `vit_so400m_patch14_siglip_384`):

            The config object or dictionary of the vision backbone.

        text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):

            The config object or dictionary of the text backbone.

        ignore_index (`int`, *optional*, defaults to -100):

            The ignore index for the loss function.

        image_token_index (`int`, *optional*, defaults to 32000):

            The image token index to encode the image prompt.

        adapter_type (`str`, *optional*, defaults to `multiscale-pool`):

            The adapter type.

        adapter_config (`dict`, *optional*, defaults to `None`):

"""

    model_type = "centurio"
    is_composition = True

    def __init__(

        self,

        timm_model="vit_so400m_patch14_siglip_384",

        image_hidden_size=1024,

        text_config=None,

        ignore_index=-100,

        image_token_index=32000,

        adapter_type="multiscale-pool",

        adapter_config=dict(),

        **kwargs,

    ):
        self.ignore_index = ignore_index
        self.image_token_index = image_token_index
        self.adapter_type = adapter_type
        self.adapter_config = adapter_config

        self.timm_model = timm_model
        self.image_hidden_size = image_hidden_size

        if isinstance(text_config, dict):
            text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
            text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
        elif text_config is None:
            text_config = CONFIG_MAPPING["llama"]()

        self.text_config = text_config

        super().__init__(**kwargs)


# q = CenturioConfig(
#     text_config=AutoConfig.from_pretrained("Qwen/Qwen2.5-7B-Instruct"),
#     image_token_index=151665,
#     adapter_type="multiscale-pool",
#     adapter_config=dict(adapter_multi_scale=2),
#     attn_implementation="flash_attention_2"
# )
# q.save_pretrained("centurio_qwen")
#
# a = CenturioConfig(
#     text_config=AutoConfig.from_pretrained("CohereForAI/aya-expanse-8b"),
#     image_token_index=255029,
#     adapter_type="multiscale-pool",
#     adapter_config=dict(adapter_multi_scale=2),
#     attn_implementation="flash_attention_2"
# )
# a.save_pretrained("centurio_aya")