--- library_name: transformers license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 - precision - recall model-index: - name: wav2vec2-large-xlsr-53-english-finetuned-babycry-v3 results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: accuracy: 0.8152173913043478 - name: F1 type: f1 value: 0.7322311897943244 - name: Precision type: precision value: 0.6645793950850661 - name: Recall type: recall value: 0.8152173913043478 --- # wav2vec2-large-xlsr-53-english-finetuned-babycry-v3 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7337 - Accuracy: {'accuracy': 0.8152173913043478} - F1: 0.7322 - Precision: 0.6646 - Recall: 0.8152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:| | 0.949 | 0.5435 | 25 | 0.7351 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | | 0.7488 | 1.0870 | 50 | 0.7795 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | | 0.6911 | 1.6304 | 75 | 0.7066 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | | 0.8113 | 2.1739 | 100 | 0.8012 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | | 0.634 | 2.7174 | 125 | 0.7801 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | | 0.6503 | 3.2609 | 150 | 0.7712 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | | 0.7523 | 3.8043 | 175 | 0.7078 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | | 0.5493 | 4.3478 | 200 | 0.7484 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | | 0.7253 | 4.8913 | 225 | 0.7341 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1