--- license: other tags: - math - alpaca - synthetic data - instruct - axolotl - finetune - gpt4 datasets: - TIGER-Lab/MathInstruct - microsoft/orca-math-word-problems-200k language: - en base_model: meta-math/MetaMath-Mistral-7B --- ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6468ce47e134d050a58aa89c%2Fjsw9mC64I69A_KwX0c6oi.png) # 🔢 Einstein-v6-7B This model is a full fine-tuned version of [meta-math/MetaMath-Mistral-7B](meta-math/MetaMath-Mistral-7B) on the following datasets: - 🧮 [TIGER-Lab/MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) - 📐 [microsoft/orca-math-word-problems-200k](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k) This model is finetuned using `8xRTX3090` + `1xRTXA6000` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). This model's training was sponsored by [sablo.ai](https://sablo.ai).
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-math/MetaMath-Mistral-7B model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false chat_template: alpaca datasets: - path: microsoft/orca-math-word-problems-200k type: alpaca_chat.load_qa conversation: alpaca - path: TIGER-Lab/MathInstruct type: alpaca conversation: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.005 #val_set_size: 0.0 output_dir: ./EulerMath-Mistral-7B-model sequence_len: 8192 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: Euler wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: Weyaxi/EulerMath-Mistral-7B save_safetensors: true gradient_accumulation_steps: 4 micro_batch_size: 2 # changed num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 # changed eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 # changed debug: deepspeed: zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# 💬 Prompt Template You can use this prompt template while using the model: ### Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: ``` This prompt template is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are helpful AI asistant."}, {"role": "user", "content": "Hello!"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` # 🔄 Quantizationed versions Quantizationed versions of this model is currently not available. It will be available soon :) # 🎯 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) # 🤖 Additional information about training This model is full fine-tuned for 2 epoch. Total number of steps was 544.
Loss graph

# 🤝 Acknowledgments Thanks to [sablo.ai](https://sablo.ai) for sponsoring this model. Thanks to all the dataset authors mentioned in the datasets section. Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model. Thanks to all open source AI community. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) If you would like to support me: [☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)