---
license: other
tags:
- math
- alpaca
- synthetic data
- instruct
- axolotl
- finetune
- gpt4
datasets:
- TIGER-Lab/MathInstruct
- microsoft/orca-math-word-problems-200k
language:
- en
base_model: meta-math/MetaMath-Mistral-7B
---
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6468ce47e134d050a58aa89c%2Fjsw9mC64I69A_KwX0c6oi.png)
# 🔢 Einstein-v6-7B
This model is a full fine-tuned version of [meta-math/MetaMath-Mistral-7B](meta-math/MetaMath-Mistral-7B) on the following datasets:
- 🧮 [TIGER-Lab/MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
- 📐 [microsoft/orca-math-word-problems-200k](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k)
This model is finetuned using `8xRTX3090` + `1xRTXA6000` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
This model's training was sponsored by [sablo.ai](https://sablo.ai).
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: meta-math/MetaMath-Mistral-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: alpaca
datasets:
- path: microsoft/orca-math-word-problems-200k
type: alpaca_chat.load_qa
conversation: alpaca
- path: TIGER-Lab/MathInstruct
type: alpaca
conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
#val_set_size: 0.0
output_dir: ./EulerMath-Mistral-7B-model
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: Euler
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/EulerMath-Mistral-7B
save_safetensors: true
gradient_accumulation_steps: 4
micro_batch_size: 2 # changed
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4 # changed
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1 # changed
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
unk_token: ""
```
# 💬 Prompt Template
You can use this prompt template while using the model:
### Alpaca
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
```
This prompt template is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
`tokenizer.apply_chat_template()` method:
```python
messages = [
{"role": "system", "content": "You are helpful AI asistant."},
{"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)
```
# 🔄 Quantizationed versions
Quantizationed versions of this model is currently not available. It will be available soon :)
# 🎯 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
# 🤖 Additional information about training
This model is full fine-tuned for 2 epoch.
Total number of steps was 544.
Loss graph
# 🤝 Acknowledgments
Thanks to [sablo.ai](https://sablo.ai) for sponsoring this model.
Thanks to all the dataset authors mentioned in the datasets section.
Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.
Thanks to all open source AI community.
[](https://github.com/OpenAccess-AI-Collective/axolotl)
If you would like to support me:
[☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)