from typing import Dict, List, Any from transformers import AutoModel, AutoTokenizer class EndpointHandler(): def __init__(self, path=""): self.tokenizer = AutoTokenizer.from_pretrained("Wellcome/WellcomeBertMesh") self.model = AutoModel.from_pretrained("Wellcome/WellcomeBertMesh", trust_remote_code=True) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ text = data.pop("inputs", data) inputs = self.tokenizer(text, padding="max_length") preds = self.model(input_ids=[inputs["input_ids"]]) id2label = self.model.config.id2label prediction = [ {"label": id2label[label_id], "score": p} for label_id, p in enumerate(preds[0].tolist()) if p > 0.5 ] return prediction