--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: claim-judge results: [] --- # claim-judge This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.7623 - Loss: 1.5465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 160 - eval_batch_size: 160 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 36 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.4968 | 1.0 | 1041 | 0.7587 | 0.6138 | | 0.4174 | 2.0 | 2082 | 0.7695 | 0.6211 | | 0.4036 | 3.0 | 3123 | 0.7733 | 0.6181 | | 0.3415 | 4.0 | 4164 | 0.7772 | 0.6450 | | 0.2868 | 5.0 | 5205 | 0.7738 | 0.6896 | | 0.2453 | 6.0 | 6246 | 0.7763 | 0.7119 | | 0.2003 | 7.0 | 7287 | 0.7728 | 0.8254 | | 0.1683 | 8.0 | 8328 | 0.7712 | 0.9288 | | 0.1439 | 9.0 | 9369 | 0.7764 | 0.8993 | | 0.1197 | 10.0 | 10410 | 0.7729 | 0.9819 | | 0.102 | 11.0 | 11451 | 0.7709 | 1.0478 | | 0.088 | 12.0 | 12492 | 0.7692 | 1.1574 | | 0.087 | 13.0 | 13533 | 0.7709 | 1.0969 | | 0.0779 | 14.0 | 14574 | 0.7661 | 1.2575 | | 0.0695 | 15.0 | 15615 | 0.7658 | 1.3540 | | 0.0664 | 16.0 | 16656 | 0.7719 | 1.2155 | | 0.058 | 17.0 | 17697 | 0.7654 | 1.3065 | | 0.0533 | 18.0 | 18738 | 0.7674 | 1.3535 | | 0.0496 | 19.0 | 19779 | 0.7663 | 1.3327 | | 0.0459 | 20.0 | 20820 | 0.7686 | 1.3893 | | 0.0432 | 21.0 | 21861 | 0.7691 | 1.4211 | | 0.0396 | 22.0 | 22902 | 0.7682 | 1.4810 | | 0.0371 | 23.0 | 23943 | 0.7705 | 1.4926 | | 0.0338 | 24.0 | 24984 | 0.7633 | 1.5058 | | 0.037 | 25.0 | 26025 | 0.7604 | 1.4986 | | 0.034 | 26.0 | 27066 | 0.7611 | 1.5314 | | 0.0317 | 27.0 | 28107 | 0.7659 | 1.4636 | | 0.0312 | 28.0 | 29148 | 0.7658 | 1.5006 | | 0.0282 | 29.0 | 30189 | 0.7672 | 1.4250 | | 0.0282 | 30.0 | 31230 | 0.7662 | 1.4904 | | 0.0264 | 31.0 | 32271 | 0.7669 | 1.5415 | | 0.0253 | 32.0 | 33312 | 0.7679 | 1.6110 | | 0.0257 | 33.0 | 34353 | 0.7645 | 1.6097 | | 0.0233 | 34.0 | 35394 | 0.7614 | 1.6646 | | 0.0251 | 35.0 | 36435 | 0.7651 | 1.6080 | | 0.0236 | 36.0 | 37476 | 0.7699 | 1.5824 | | 0.025 | 37.0 | 38517 | 0.7623 | 1.5465 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3