--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - whitefox123/tashkeel metrics: - wer model-index: - name: Whisper Tiny Ar - AzeemX results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Tashkeel type: whitefox123/tashkeel config: default split: None args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 40.0 --- # Whisper Tiny Ar - AzeemX This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Tashkeel dataset. It achieves the following results on the evaluation set: - Loss: 0.2374 - Wer: 40.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2521 | 1.6 | 1000 | 0.3009 | 53.0811 | | 0.146 | 3.2 | 2000 | 0.2476 | 42.5946 | | 0.1238 | 4.8 | 3000 | 0.2334 | 40.1081 | | 0.0916 | 6.4 | 4000 | 0.2372 | 39.5315 | | 0.0866 | 8.0 | 5000 | 0.2374 | 40.0 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0