File size: 1,760 Bytes
43ccdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
license: apache-2.0
base_model: arbml/whisper-small-ar
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Small Ar 4000 Finetuned - AzeemX
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Ar 4000 Finetuned - AzeemX

This model is a fine-tuned version of [arbml/whisper-small-ar](https://huggingface.co/arbml/whisper-small-ar) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0551
- Wer: 137.1649

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer      |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.1103        | 1.0323 | 1000 | 0.1106          | 77.6886  |
| 0.042         | 2.0645 | 2000 | 0.0782          | 75.1757  |
| 0.0146        | 3.0968 | 3000 | 0.0606          | 107.6103 |
| 0.0064        | 4.1290 | 4000 | 0.0551          | 137.1649 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.3.1
- Datasets 3.0.1
- Tokenizers 0.20.0