QJerry commited on
Commit
ed266a5
·
verified ·
1 Parent(s): 9025e7e

Initial commit.

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +202 -0
  2. adapter_config.json +35 -0
  3. adapter_model.safetensors +3 -0
  4. checkpoint-100/README.md +202 -0
  5. checkpoint-100/adapter_config.json +35 -0
  6. checkpoint-100/adapter_model.safetensors +3 -0
  7. checkpoint-100/trainer_state.json +733 -0
  8. checkpoint-100/training_args.bin +3 -0
  9. checkpoint-120/README.md +202 -0
  10. checkpoint-120/adapter_config.json +35 -0
  11. checkpoint-120/adapter_model.safetensors +3 -0
  12. checkpoint-120/trainer_state.json +873 -0
  13. checkpoint-120/training_args.bin +3 -0
  14. checkpoint-140/README.md +202 -0
  15. checkpoint-140/adapter_config.json +35 -0
  16. checkpoint-140/adapter_model.safetensors +3 -0
  17. checkpoint-140/trainer_state.json +1013 -0
  18. checkpoint-140/training_args.bin +3 -0
  19. checkpoint-160/README.md +202 -0
  20. checkpoint-160/adapter_config.json +35 -0
  21. checkpoint-160/adapter_model.safetensors +3 -0
  22. checkpoint-160/trainer_state.json +1153 -0
  23. checkpoint-160/training_args.bin +3 -0
  24. checkpoint-180/README.md +202 -0
  25. checkpoint-180/adapter_config.json +35 -0
  26. checkpoint-180/adapter_model.safetensors +3 -0
  27. checkpoint-180/trainer_state.json +1293 -0
  28. checkpoint-180/training_args.bin +3 -0
  29. checkpoint-20/README.md +202 -0
  30. checkpoint-20/adapter_config.json +35 -0
  31. checkpoint-20/adapter_model.safetensors +3 -0
  32. checkpoint-20/trainer_state.json +173 -0
  33. checkpoint-20/training_args.bin +3 -0
  34. checkpoint-200/README.md +202 -0
  35. checkpoint-200/adapter_config.json +35 -0
  36. checkpoint-200/adapter_model.safetensors +3 -0
  37. checkpoint-200/trainer_state.json +1433 -0
  38. checkpoint-200/training_args.bin +3 -0
  39. checkpoint-220/README.md +202 -0
  40. checkpoint-220/adapter_config.json +35 -0
  41. checkpoint-220/adapter_model.safetensors +3 -0
  42. checkpoint-220/trainer_state.json +1573 -0
  43. checkpoint-220/training_args.bin +3 -0
  44. checkpoint-240/README.md +202 -0
  45. checkpoint-240/adapter_config.json +35 -0
  46. checkpoint-240/adapter_model.safetensors +3 -0
  47. checkpoint-240/trainer_state.json +1713 -0
  48. checkpoint-240/training_args.bin +3 -0
  49. checkpoint-260/README.md +202 -0
  50. checkpoint-260/adapter_config.json +35 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c37c87c8430e0043db61b29ed2b301904b917a7eece2c67adda8674086ea499e
3
+ size 1138856856
checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2634872fe40006913b6fa9d7ec305dc37e5fdbbcffeee35f4b1e11518f41c6a
3
+ size 1138856856
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8533333333333334,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 160.11701043689894,
14
+ "learning_rate": 0.0,
15
+ "loss": 32.4968,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 157.24779534424323,
21
+ "learning_rate": 1.5051499783199057e-06,
22
+ "loss": 31.6979,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 157.9465272449825,
28
+ "learning_rate": 2.385606273598312e-06,
29
+ "loss": 31.8828,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 160.2154859965946,
35
+ "learning_rate": 3.0102999566398115e-06,
36
+ "loss": 31.9681,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 158.5305446712084,
42
+ "learning_rate": 3.4948500216800934e-06,
43
+ "loss": 31.3717,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 155.50243039700376,
49
+ "learning_rate": 3.890756251918218e-06,
50
+ "loss": 30.5348,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 168.6887446693614,
56
+ "learning_rate": 4.225490200071284e-06,
57
+ "loss": 31.3845,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 164.2631689450651,
63
+ "learning_rate": 4.515449934959717e-06,
64
+ "loss": 30.5243,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 174.1878139573776,
70
+ "learning_rate": 4.771212547196624e-06,
71
+ "loss": 30.0138,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 177.9519334680014,
77
+ "learning_rate": 4.9999999999999996e-06,
78
+ "loss": 29.6143,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 183.57104380865735,
84
+ "learning_rate": 5.206963425791125e-06,
85
+ "loss": 28.8718,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 186.4090344511231,
91
+ "learning_rate": 5.395906230238124e-06,
92
+ "loss": 26.1695,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 198.17161320746723,
98
+ "learning_rate": 5.5697167615341825e-06,
99
+ "loss": 26.1266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 182.4443087115901,
105
+ "learning_rate": 5.730640178391189e-06,
106
+ "loss": 24.2121,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 159.38105380659272,
112
+ "learning_rate": 5.880456295278406e-06,
113
+ "loss": 22.5796,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 142.82387126501297,
119
+ "learning_rate": 6.020599913279623e-06,
120
+ "loss": 21.1346,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 123.86394296641578,
126
+ "learning_rate": 6.15224460689137e-06,
127
+ "loss": 19.8457,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 112.3988260336824,
133
+ "learning_rate": 6.276362525516529e-06,
134
+ "loss": 18.7824,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 120.96712330991012,
140
+ "learning_rate": 6.393768004764144e-06,
141
+ "loss": 18.0207,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 129.42692949353702,
147
+ "learning_rate": 6.505149978319905e-06,
148
+ "loss": 16.8355,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 120.65595457746791,
154
+ "learning_rate": 6.611096473669596e-06,
155
+ "loss": 15.252,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 133.05280466087515,
161
+ "learning_rate": 6.712113404111031e-06,
162
+ "loss": 14.1391,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 127.95029628849048,
168
+ "learning_rate": 6.808639180087963e-06,
169
+ "loss": 12.9566,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 108.83495245094748,
175
+ "learning_rate": 6.90105620855803e-06,
176
+ "loss": 11.8743,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 99.90727146021455,
182
+ "learning_rate": 6.989700043360187e-06,
183
+ "loss": 10.962,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 98.37126740059823,
189
+ "learning_rate": 7.074866739854089e-06,
190
+ "loss": 9.9919,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 92.26708429201608,
196
+ "learning_rate": 7.156818820794936e-06,
197
+ "loss": 8.8811,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 83.36099898839835,
203
+ "learning_rate": 7.235790156711096e-06,
204
+ "loss": 7.7806,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 68.07500315598597,
210
+ "learning_rate": 7.3119899894947795e-06,
211
+ "loss": 7.0528,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 69.58960332280246,
217
+ "learning_rate": 7.385606273598311e-06,
218
+ "loss": 6.3683,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 68.77532204123075,
224
+ "learning_rate": 7.456808469171363e-06,
225
+ "loss": 6.1635,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 66.29676636510072,
231
+ "learning_rate": 7.5257498915995295e-06,
232
+ "loss": 4.711,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 42.87145091679237,
238
+ "learning_rate": 7.592569699389437e-06,
239
+ "loss": 4.5119,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 26.2592350291551,
245
+ "learning_rate": 7.657394585211274e-06,
246
+ "loss": 4.31,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 15.35959008067237,
252
+ "learning_rate": 7.720340221751376e-06,
253
+ "loss": 4.0001,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.50847651865227,
259
+ "learning_rate": 7.781512503836437e-06,
260
+ "loss": 3.5723,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 6.562581089063746,
266
+ "learning_rate": 7.841008620334974e-06,
267
+ "loss": 3.9254,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 5.6145595722250095,
273
+ "learning_rate": 7.89891798308405e-06,
274
+ "loss": 3.8746,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 5.385367220486204,
280
+ "learning_rate": 7.955323035132495e-06,
281
+ "loss": 3.8128,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 5.403447124703616,
287
+ "learning_rate": 8.010299956639811e-06,
288
+ "loss": 3.885,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 5.48242204895128,
294
+ "learning_rate": 8.063919283598677e-06,
295
+ "loss": 3.8048,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 5.5525098950513865,
301
+ "learning_rate": 8.116246451989503e-06,
302
+ "loss": 3.7508,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 5.354384520535484,
308
+ "learning_rate": 8.167342277897933e-06,
309
+ "loss": 3.5069,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 5.46272338131107,
315
+ "learning_rate": 8.217263382430936e-06,
316
+ "loss": 3.6747,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 4.798550688968453,
322
+ "learning_rate": 8.266062568876717e-06,
323
+ "loss": 3.1609,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 5.755104452953421,
329
+ "learning_rate": 8.31378915840787e-06,
330
+ "loss": 3.5733,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 4.618763611067563,
336
+ "learning_rate": 8.360489289678585e-06,
337
+ "loss": 2.9402,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 5.506785974818791,
343
+ "learning_rate": 8.406206186877936e-06,
344
+ "loss": 3.382,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 4.68603207809794,
350
+ "learning_rate": 8.450980400142568e-06,
351
+ "loss": 2.9918,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 5.124033394817131,
357
+ "learning_rate": 8.494850021680093e-06,
358
+ "loss": 3.3202,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 4.293001183481895,
364
+ "learning_rate": 8.537850880489681e-06,
365
+ "loss": 2.8519,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 4.382596858902394,
371
+ "learning_rate": 8.580016718173996e-06,
372
+ "loss": 2.9683,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 4.3176263388044696,
378
+ "learning_rate": 8.621379348003945e-06,
379
+ "loss": 2.9257,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 4.5250022171605195,
385
+ "learning_rate": 8.661968799114844e-06,
386
+ "loss": 3.0556,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 4.429424190600661,
392
+ "learning_rate": 8.701813447471218e-06,
393
+ "loss": 2.9513,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 4.349652568052827,
399
+ "learning_rate": 8.740940135031001e-06,
400
+ "loss": 2.9029,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 4.299227871435445,
406
+ "learning_rate": 8.779374278362457e-06,
407
+ "loss": 2.5989,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 4.562461330302201,
413
+ "learning_rate": 8.817139967814684e-06,
414
+ "loss": 2.8158,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 4.606987182758338,
420
+ "learning_rate": 8.854260058210721e-06,
421
+ "loss": 2.6272,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 4.9420031522511545,
427
+ "learning_rate": 8.890756251918216e-06,
428
+ "loss": 2.5488,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 4.706462297046012,
434
+ "learning_rate": 8.926649175053834e-06,
435
+ "loss": 2.3575,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 4.862820204363494,
441
+ "learning_rate": 8.961958447491269e-06,
442
+ "loss": 2.2952,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 4.911045913397774,
448
+ "learning_rate": 8.996702747267908e-06,
449
+ "loss": 2.1768,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 5.46978680182973,
455
+ "learning_rate": 9.030899869919434e-06,
456
+ "loss": 2.2528,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 5.847558397227374,
462
+ "learning_rate": 9.064566783214276e-06,
463
+ "loss": 2.2401,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 5.984440656257,
469
+ "learning_rate": 9.097719677709343e-06,
470
+ "loss": 2.156,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 6.146172189799918,
476
+ "learning_rate": 9.130374013504131e-06,
477
+ "loss": 2.0059,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 5.725706778130614,
483
+ "learning_rate": 9.162544563531182e-06,
484
+ "loss": 1.7756,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 6.479060263133115,
490
+ "learning_rate": 9.194245453686277e-06,
491
+ "loss": 1.7651,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 7.319291050667066,
497
+ "learning_rate": 9.225490200071284e-06,
498
+ "loss": 1.7712,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 6.913275412032087,
504
+ "learning_rate": 9.256291743595376e-06,
505
+ "loss": 1.709,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 6.600657239614328,
511
+ "learning_rate": 9.28666248215634e-06,
512
+ "loss": 1.3731,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 7.301483724647945,
518
+ "learning_rate": 9.316614300602277e-06,
519
+ "loss": 1.4166,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 7.154933225265475,
525
+ "learning_rate": 9.346158598654881e-06,
526
+ "loss": 1.2797,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 8.248472592538771,
532
+ "learning_rate": 9.375306316958499e-06,
533
+ "loss": 1.2082,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 7.444479096112177,
539
+ "learning_rate": 9.404067961403957e-06,
540
+ "loss": 1.0402,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 6.819760434594012,
546
+ "learning_rate": 9.432453625862409e-06,
547
+ "loss": 0.8244,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 6.894760862855001,
553
+ "learning_rate": 9.460473013452401e-06,
554
+ "loss": 0.8345,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 6.001848571839919,
560
+ "learning_rate": 9.488135456452207e-06,
561
+ "loss": 0.6839,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 5.709147411501981,
567
+ "learning_rate": 9.515449934959717e-06,
568
+ "loss": 0.6567,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 4.128977158730638,
574
+ "learning_rate": 9.542425094393249e-06,
575
+ "loss": 0.545,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 2.604915806147427,
581
+ "learning_rate": 9.569069261918582e-06,
582
+ "loss": 0.4596,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 2.039939253407506,
588
+ "learning_rate": 9.59539046188037e-06,
589
+ "loss": 0.452,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 2.0398988141415337,
595
+ "learning_rate": 9.621396430309407e-06,
596
+ "loss": 0.4538,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 2.37589477950211,
602
+ "learning_rate": 9.647094628571464e-06,
603
+ "loss": 0.4505,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 2.80580920047501,
609
+ "learning_rate": 9.672492256217837e-06,
610
+ "loss": 0.5284,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 2.3687428819051197,
616
+ "learning_rate": 9.697596263093091e-06,
617
+ "loss": 0.4371,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 1.6362502854757155,
623
+ "learning_rate": 9.722413360750844e-06,
624
+ "loss": 0.3652,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 1.5360860168740427,
630
+ "learning_rate": 9.746950033224562e-06,
631
+ "loss": 0.3235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 1.7245475092642693,
637
+ "learning_rate": 9.771212547196623e-06,
638
+ "loss": 0.3072,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 1.4493496982196852,
644
+ "learning_rate": 9.795206961605467e-06,
645
+ "loss": 0.2474,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 1.1662262130552072,
651
+ "learning_rate": 9.818939136727777e-06,
652
+ "loss": 0.2684,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 1.1727132215390659,
658
+ "learning_rate": 9.842414742769675e-06,
659
+ "loss": 0.3456,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.8435059300379855,
665
+ "learning_rate": 9.865639267998493e-06,
666
+ "loss": 0.227,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.8593375804730568,
672
+ "learning_rate": 9.888618026444238e-06,
673
+ "loss": 0.1985,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 1.0673772841412472,
679
+ "learning_rate": 9.911356165197841e-06,
680
+ "loss": 0.3195,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.9341285801648793,
686
+ "learning_rate": 9.933858671331224e-06,
687
+ "loss": 0.213,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.7197728549764331,
693
+ "learning_rate": 9.956130378462474e-06,
694
+ "loss": 0.2067,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.5655901060353195,
700
+ "learning_rate": 9.978175972987748e-06,
701
+ "loss": 0.1708,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.4681745812066334,
707
+ "learning_rate": 9.999999999999999e-06,
708
+ "loss": 0.1983,
709
+ "step": 100
710
+ }
711
+ ],
712
+ "logging_steps": 1,
713
+ "max_steps": 301,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 3,
716
+ "save_steps": 20,
717
+ "stateful_callbacks": {
718
+ "TrainerControl": {
719
+ "args": {
720
+ "should_epoch_stop": false,
721
+ "should_evaluate": false,
722
+ "should_log": false,
723
+ "should_save": true,
724
+ "should_training_stop": false
725
+ },
726
+ "attributes": {}
727
+ }
728
+ },
729
+ "total_flos": 1.4183197916633498e+18,
730
+ "train_batch_size": 16,
731
+ "trial_name": null,
732
+ "trial_params": null
733
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9430fb289d52200b279530dc31f818fe016b81f2a2feb4d356e75541590998de
3
+ size 6840
checkpoint-120/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-120/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-120/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edbd90e3439f57e995d61f218ff6660a7740c5b9bc153415f6b8ebb873b75737
3
+ size 1138856856
checkpoint-120/trainer_state.json ADDED
@@ -0,0 +1,873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.024,
5
+ "eval_steps": 500,
6
+ "global_step": 120,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 160.11701043689894,
14
+ "learning_rate": 0.0,
15
+ "loss": 32.4968,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 157.24779534424323,
21
+ "learning_rate": 1.5051499783199057e-06,
22
+ "loss": 31.6979,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 157.9465272449825,
28
+ "learning_rate": 2.385606273598312e-06,
29
+ "loss": 31.8828,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 160.2154859965946,
35
+ "learning_rate": 3.0102999566398115e-06,
36
+ "loss": 31.9681,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 158.5305446712084,
42
+ "learning_rate": 3.4948500216800934e-06,
43
+ "loss": 31.3717,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 155.50243039700376,
49
+ "learning_rate": 3.890756251918218e-06,
50
+ "loss": 30.5348,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 168.6887446693614,
56
+ "learning_rate": 4.225490200071284e-06,
57
+ "loss": 31.3845,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 164.2631689450651,
63
+ "learning_rate": 4.515449934959717e-06,
64
+ "loss": 30.5243,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 174.1878139573776,
70
+ "learning_rate": 4.771212547196624e-06,
71
+ "loss": 30.0138,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 177.9519334680014,
77
+ "learning_rate": 4.9999999999999996e-06,
78
+ "loss": 29.6143,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 183.57104380865735,
84
+ "learning_rate": 5.206963425791125e-06,
85
+ "loss": 28.8718,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 186.4090344511231,
91
+ "learning_rate": 5.395906230238124e-06,
92
+ "loss": 26.1695,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 198.17161320746723,
98
+ "learning_rate": 5.5697167615341825e-06,
99
+ "loss": 26.1266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 182.4443087115901,
105
+ "learning_rate": 5.730640178391189e-06,
106
+ "loss": 24.2121,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 159.38105380659272,
112
+ "learning_rate": 5.880456295278406e-06,
113
+ "loss": 22.5796,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 142.82387126501297,
119
+ "learning_rate": 6.020599913279623e-06,
120
+ "loss": 21.1346,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 123.86394296641578,
126
+ "learning_rate": 6.15224460689137e-06,
127
+ "loss": 19.8457,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 112.3988260336824,
133
+ "learning_rate": 6.276362525516529e-06,
134
+ "loss": 18.7824,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 120.96712330991012,
140
+ "learning_rate": 6.393768004764144e-06,
141
+ "loss": 18.0207,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 129.42692949353702,
147
+ "learning_rate": 6.505149978319905e-06,
148
+ "loss": 16.8355,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 120.65595457746791,
154
+ "learning_rate": 6.611096473669596e-06,
155
+ "loss": 15.252,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 133.05280466087515,
161
+ "learning_rate": 6.712113404111031e-06,
162
+ "loss": 14.1391,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 127.95029628849048,
168
+ "learning_rate": 6.808639180087963e-06,
169
+ "loss": 12.9566,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 108.83495245094748,
175
+ "learning_rate": 6.90105620855803e-06,
176
+ "loss": 11.8743,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 99.90727146021455,
182
+ "learning_rate": 6.989700043360187e-06,
183
+ "loss": 10.962,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 98.37126740059823,
189
+ "learning_rate": 7.074866739854089e-06,
190
+ "loss": 9.9919,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 92.26708429201608,
196
+ "learning_rate": 7.156818820794936e-06,
197
+ "loss": 8.8811,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 83.36099898839835,
203
+ "learning_rate": 7.235790156711096e-06,
204
+ "loss": 7.7806,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 68.07500315598597,
210
+ "learning_rate": 7.3119899894947795e-06,
211
+ "loss": 7.0528,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 69.58960332280246,
217
+ "learning_rate": 7.385606273598311e-06,
218
+ "loss": 6.3683,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 68.77532204123075,
224
+ "learning_rate": 7.456808469171363e-06,
225
+ "loss": 6.1635,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 66.29676636510072,
231
+ "learning_rate": 7.5257498915995295e-06,
232
+ "loss": 4.711,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 42.87145091679237,
238
+ "learning_rate": 7.592569699389437e-06,
239
+ "loss": 4.5119,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 26.2592350291551,
245
+ "learning_rate": 7.657394585211274e-06,
246
+ "loss": 4.31,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 15.35959008067237,
252
+ "learning_rate": 7.720340221751376e-06,
253
+ "loss": 4.0001,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.50847651865227,
259
+ "learning_rate": 7.781512503836437e-06,
260
+ "loss": 3.5723,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 6.562581089063746,
266
+ "learning_rate": 7.841008620334974e-06,
267
+ "loss": 3.9254,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 5.6145595722250095,
273
+ "learning_rate": 7.89891798308405e-06,
274
+ "loss": 3.8746,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 5.385367220486204,
280
+ "learning_rate": 7.955323035132495e-06,
281
+ "loss": 3.8128,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 5.403447124703616,
287
+ "learning_rate": 8.010299956639811e-06,
288
+ "loss": 3.885,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 5.48242204895128,
294
+ "learning_rate": 8.063919283598677e-06,
295
+ "loss": 3.8048,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 5.5525098950513865,
301
+ "learning_rate": 8.116246451989503e-06,
302
+ "loss": 3.7508,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 5.354384520535484,
308
+ "learning_rate": 8.167342277897933e-06,
309
+ "loss": 3.5069,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 5.46272338131107,
315
+ "learning_rate": 8.217263382430936e-06,
316
+ "loss": 3.6747,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 4.798550688968453,
322
+ "learning_rate": 8.266062568876717e-06,
323
+ "loss": 3.1609,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 5.755104452953421,
329
+ "learning_rate": 8.31378915840787e-06,
330
+ "loss": 3.5733,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 4.618763611067563,
336
+ "learning_rate": 8.360489289678585e-06,
337
+ "loss": 2.9402,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 5.506785974818791,
343
+ "learning_rate": 8.406206186877936e-06,
344
+ "loss": 3.382,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 4.68603207809794,
350
+ "learning_rate": 8.450980400142568e-06,
351
+ "loss": 2.9918,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 5.124033394817131,
357
+ "learning_rate": 8.494850021680093e-06,
358
+ "loss": 3.3202,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 4.293001183481895,
364
+ "learning_rate": 8.537850880489681e-06,
365
+ "loss": 2.8519,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 4.382596858902394,
371
+ "learning_rate": 8.580016718173996e-06,
372
+ "loss": 2.9683,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 4.3176263388044696,
378
+ "learning_rate": 8.621379348003945e-06,
379
+ "loss": 2.9257,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 4.5250022171605195,
385
+ "learning_rate": 8.661968799114844e-06,
386
+ "loss": 3.0556,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 4.429424190600661,
392
+ "learning_rate": 8.701813447471218e-06,
393
+ "loss": 2.9513,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 4.349652568052827,
399
+ "learning_rate": 8.740940135031001e-06,
400
+ "loss": 2.9029,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 4.299227871435445,
406
+ "learning_rate": 8.779374278362457e-06,
407
+ "loss": 2.5989,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 4.562461330302201,
413
+ "learning_rate": 8.817139967814684e-06,
414
+ "loss": 2.8158,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 4.606987182758338,
420
+ "learning_rate": 8.854260058210721e-06,
421
+ "loss": 2.6272,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 4.9420031522511545,
427
+ "learning_rate": 8.890756251918216e-06,
428
+ "loss": 2.5488,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 4.706462297046012,
434
+ "learning_rate": 8.926649175053834e-06,
435
+ "loss": 2.3575,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 4.862820204363494,
441
+ "learning_rate": 8.961958447491269e-06,
442
+ "loss": 2.2952,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 4.911045913397774,
448
+ "learning_rate": 8.996702747267908e-06,
449
+ "loss": 2.1768,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 5.46978680182973,
455
+ "learning_rate": 9.030899869919434e-06,
456
+ "loss": 2.2528,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 5.847558397227374,
462
+ "learning_rate": 9.064566783214276e-06,
463
+ "loss": 2.2401,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 5.984440656257,
469
+ "learning_rate": 9.097719677709343e-06,
470
+ "loss": 2.156,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 6.146172189799918,
476
+ "learning_rate": 9.130374013504131e-06,
477
+ "loss": 2.0059,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 5.725706778130614,
483
+ "learning_rate": 9.162544563531182e-06,
484
+ "loss": 1.7756,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 6.479060263133115,
490
+ "learning_rate": 9.194245453686277e-06,
491
+ "loss": 1.7651,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 7.319291050667066,
497
+ "learning_rate": 9.225490200071284e-06,
498
+ "loss": 1.7712,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 6.913275412032087,
504
+ "learning_rate": 9.256291743595376e-06,
505
+ "loss": 1.709,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 6.600657239614328,
511
+ "learning_rate": 9.28666248215634e-06,
512
+ "loss": 1.3731,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 7.301483724647945,
518
+ "learning_rate": 9.316614300602277e-06,
519
+ "loss": 1.4166,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 7.154933225265475,
525
+ "learning_rate": 9.346158598654881e-06,
526
+ "loss": 1.2797,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 8.248472592538771,
532
+ "learning_rate": 9.375306316958499e-06,
533
+ "loss": 1.2082,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 7.444479096112177,
539
+ "learning_rate": 9.404067961403957e-06,
540
+ "loss": 1.0402,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 6.819760434594012,
546
+ "learning_rate": 9.432453625862409e-06,
547
+ "loss": 0.8244,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 6.894760862855001,
553
+ "learning_rate": 9.460473013452401e-06,
554
+ "loss": 0.8345,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 6.001848571839919,
560
+ "learning_rate": 9.488135456452207e-06,
561
+ "loss": 0.6839,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 5.709147411501981,
567
+ "learning_rate": 9.515449934959717e-06,
568
+ "loss": 0.6567,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 4.128977158730638,
574
+ "learning_rate": 9.542425094393249e-06,
575
+ "loss": 0.545,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 2.604915806147427,
581
+ "learning_rate": 9.569069261918582e-06,
582
+ "loss": 0.4596,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 2.039939253407506,
588
+ "learning_rate": 9.59539046188037e-06,
589
+ "loss": 0.452,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 2.0398988141415337,
595
+ "learning_rate": 9.621396430309407e-06,
596
+ "loss": 0.4538,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 2.37589477950211,
602
+ "learning_rate": 9.647094628571464e-06,
603
+ "loss": 0.4505,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 2.80580920047501,
609
+ "learning_rate": 9.672492256217837e-06,
610
+ "loss": 0.5284,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 2.3687428819051197,
616
+ "learning_rate": 9.697596263093091e-06,
617
+ "loss": 0.4371,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 1.6362502854757155,
623
+ "learning_rate": 9.722413360750844e-06,
624
+ "loss": 0.3652,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 1.5360860168740427,
630
+ "learning_rate": 9.746950033224562e-06,
631
+ "loss": 0.3235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 1.7245475092642693,
637
+ "learning_rate": 9.771212547196623e-06,
638
+ "loss": 0.3072,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 1.4493496982196852,
644
+ "learning_rate": 9.795206961605467e-06,
645
+ "loss": 0.2474,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 1.1662262130552072,
651
+ "learning_rate": 9.818939136727777e-06,
652
+ "loss": 0.2684,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 1.1727132215390659,
658
+ "learning_rate": 9.842414742769675e-06,
659
+ "loss": 0.3456,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.8435059300379855,
665
+ "learning_rate": 9.865639267998493e-06,
666
+ "loss": 0.227,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.8593375804730568,
672
+ "learning_rate": 9.888618026444238e-06,
673
+ "loss": 0.1985,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 1.0673772841412472,
679
+ "learning_rate": 9.911356165197841e-06,
680
+ "loss": 0.3195,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.9341285801648793,
686
+ "learning_rate": 9.933858671331224e-06,
687
+ "loss": 0.213,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.7197728549764331,
693
+ "learning_rate": 9.956130378462474e-06,
694
+ "loss": 0.2067,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.5655901060353195,
700
+ "learning_rate": 9.978175972987748e-06,
701
+ "loss": 0.1708,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.4681745812066334,
707
+ "learning_rate": 9.999999999999999e-06,
708
+ "loss": 0.1983,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.4488180280567293,
714
+ "learning_rate": 1e-05,
715
+ "loss": 0.1401,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.43194512376224187,
721
+ "learning_rate": 1e-05,
722
+ "loss": 0.1097,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.3754480982834532,
728
+ "learning_rate": 1e-05,
729
+ "loss": 0.1531,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.34151633602448267,
735
+ "learning_rate": 1e-05,
736
+ "loss": 0.1685,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.26356638458244175,
742
+ "learning_rate": 1e-05,
743
+ "loss": 0.1104,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.27641004897246113,
749
+ "learning_rate": 1e-05,
750
+ "loss": 0.1589,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.1639383504796773,
756
+ "learning_rate": 1e-05,
757
+ "loss": 0.1064,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.24233145434818837,
763
+ "learning_rate": 1e-05,
764
+ "loss": 0.1385,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.16015184210317215,
770
+ "learning_rate": 1e-05,
771
+ "loss": 0.121,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.14931644417242712,
777
+ "learning_rate": 1e-05,
778
+ "loss": 0.1117,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.15078311335939154,
784
+ "learning_rate": 1e-05,
785
+ "loss": 0.1034,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.16714082761639734,
791
+ "learning_rate": 1e-05,
792
+ "loss": 0.115,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.12479711996187942,
798
+ "learning_rate": 1e-05,
799
+ "loss": 0.1029,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.14783351137940065,
805
+ "learning_rate": 1e-05,
806
+ "loss": 0.0987,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.11311876630863582,
812
+ "learning_rate": 1e-05,
813
+ "loss": 0.0911,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.1238329581090649,
819
+ "learning_rate": 1e-05,
820
+ "loss": 0.1095,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.11117413394533605,
826
+ "learning_rate": 1e-05,
827
+ "loss": 0.0968,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.09247708923706752,
833
+ "learning_rate": 1e-05,
834
+ "loss": 0.0985,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.12028574166046906,
840
+ "learning_rate": 1e-05,
841
+ "loss": 0.1085,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.075460717991084,
847
+ "learning_rate": 1e-05,
848
+ "loss": 0.1007,
849
+ "step": 120
850
+ }
851
+ ],
852
+ "logging_steps": 1,
853
+ "max_steps": 301,
854
+ "num_input_tokens_seen": 0,
855
+ "num_train_epochs": 3,
856
+ "save_steps": 20,
857
+ "stateful_callbacks": {
858
+ "TrainerControl": {
859
+ "args": {
860
+ "should_epoch_stop": false,
861
+ "should_evaluate": false,
862
+ "should_log": false,
863
+ "should_save": true,
864
+ "should_training_stop": false
865
+ },
866
+ "attributes": {}
867
+ }
868
+ },
869
+ "total_flos": 1.7047845829953454e+18,
870
+ "train_batch_size": 16,
871
+ "trial_name": null,
872
+ "trial_params": null
873
+ }
checkpoint-120/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9430fb289d52200b279530dc31f818fe016b81f2a2feb4d356e75541590998de
3
+ size 6840
checkpoint-140/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-140/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-140/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f62f96cd012cd05339ffc07e7d0c68b8d45f440cf07e6488c18442caf3c457e
3
+ size 1138856856
checkpoint-140/trainer_state.json ADDED
@@ -0,0 +1,1013 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.1946666666666665,
5
+ "eval_steps": 500,
6
+ "global_step": 140,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 160.11701043689894,
14
+ "learning_rate": 0.0,
15
+ "loss": 32.4968,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 157.24779534424323,
21
+ "learning_rate": 1.5051499783199057e-06,
22
+ "loss": 31.6979,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 157.9465272449825,
28
+ "learning_rate": 2.385606273598312e-06,
29
+ "loss": 31.8828,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 160.2154859965946,
35
+ "learning_rate": 3.0102999566398115e-06,
36
+ "loss": 31.9681,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 158.5305446712084,
42
+ "learning_rate": 3.4948500216800934e-06,
43
+ "loss": 31.3717,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 155.50243039700376,
49
+ "learning_rate": 3.890756251918218e-06,
50
+ "loss": 30.5348,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 168.6887446693614,
56
+ "learning_rate": 4.225490200071284e-06,
57
+ "loss": 31.3845,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 164.2631689450651,
63
+ "learning_rate": 4.515449934959717e-06,
64
+ "loss": 30.5243,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 174.1878139573776,
70
+ "learning_rate": 4.771212547196624e-06,
71
+ "loss": 30.0138,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 177.9519334680014,
77
+ "learning_rate": 4.9999999999999996e-06,
78
+ "loss": 29.6143,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 183.57104380865735,
84
+ "learning_rate": 5.206963425791125e-06,
85
+ "loss": 28.8718,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 186.4090344511231,
91
+ "learning_rate": 5.395906230238124e-06,
92
+ "loss": 26.1695,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 198.17161320746723,
98
+ "learning_rate": 5.5697167615341825e-06,
99
+ "loss": 26.1266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 182.4443087115901,
105
+ "learning_rate": 5.730640178391189e-06,
106
+ "loss": 24.2121,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 159.38105380659272,
112
+ "learning_rate": 5.880456295278406e-06,
113
+ "loss": 22.5796,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 142.82387126501297,
119
+ "learning_rate": 6.020599913279623e-06,
120
+ "loss": 21.1346,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 123.86394296641578,
126
+ "learning_rate": 6.15224460689137e-06,
127
+ "loss": 19.8457,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 112.3988260336824,
133
+ "learning_rate": 6.276362525516529e-06,
134
+ "loss": 18.7824,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 120.96712330991012,
140
+ "learning_rate": 6.393768004764144e-06,
141
+ "loss": 18.0207,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 129.42692949353702,
147
+ "learning_rate": 6.505149978319905e-06,
148
+ "loss": 16.8355,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 120.65595457746791,
154
+ "learning_rate": 6.611096473669596e-06,
155
+ "loss": 15.252,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 133.05280466087515,
161
+ "learning_rate": 6.712113404111031e-06,
162
+ "loss": 14.1391,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 127.95029628849048,
168
+ "learning_rate": 6.808639180087963e-06,
169
+ "loss": 12.9566,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 108.83495245094748,
175
+ "learning_rate": 6.90105620855803e-06,
176
+ "loss": 11.8743,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 99.90727146021455,
182
+ "learning_rate": 6.989700043360187e-06,
183
+ "loss": 10.962,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 98.37126740059823,
189
+ "learning_rate": 7.074866739854089e-06,
190
+ "loss": 9.9919,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 92.26708429201608,
196
+ "learning_rate": 7.156818820794936e-06,
197
+ "loss": 8.8811,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 83.36099898839835,
203
+ "learning_rate": 7.235790156711096e-06,
204
+ "loss": 7.7806,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 68.07500315598597,
210
+ "learning_rate": 7.3119899894947795e-06,
211
+ "loss": 7.0528,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 69.58960332280246,
217
+ "learning_rate": 7.385606273598311e-06,
218
+ "loss": 6.3683,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 68.77532204123075,
224
+ "learning_rate": 7.456808469171363e-06,
225
+ "loss": 6.1635,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 66.29676636510072,
231
+ "learning_rate": 7.5257498915995295e-06,
232
+ "loss": 4.711,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 42.87145091679237,
238
+ "learning_rate": 7.592569699389437e-06,
239
+ "loss": 4.5119,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 26.2592350291551,
245
+ "learning_rate": 7.657394585211274e-06,
246
+ "loss": 4.31,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 15.35959008067237,
252
+ "learning_rate": 7.720340221751376e-06,
253
+ "loss": 4.0001,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.50847651865227,
259
+ "learning_rate": 7.781512503836437e-06,
260
+ "loss": 3.5723,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 6.562581089063746,
266
+ "learning_rate": 7.841008620334974e-06,
267
+ "loss": 3.9254,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 5.6145595722250095,
273
+ "learning_rate": 7.89891798308405e-06,
274
+ "loss": 3.8746,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 5.385367220486204,
280
+ "learning_rate": 7.955323035132495e-06,
281
+ "loss": 3.8128,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 5.403447124703616,
287
+ "learning_rate": 8.010299956639811e-06,
288
+ "loss": 3.885,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 5.48242204895128,
294
+ "learning_rate": 8.063919283598677e-06,
295
+ "loss": 3.8048,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 5.5525098950513865,
301
+ "learning_rate": 8.116246451989503e-06,
302
+ "loss": 3.7508,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 5.354384520535484,
308
+ "learning_rate": 8.167342277897933e-06,
309
+ "loss": 3.5069,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 5.46272338131107,
315
+ "learning_rate": 8.217263382430936e-06,
316
+ "loss": 3.6747,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 4.798550688968453,
322
+ "learning_rate": 8.266062568876717e-06,
323
+ "loss": 3.1609,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 5.755104452953421,
329
+ "learning_rate": 8.31378915840787e-06,
330
+ "loss": 3.5733,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 4.618763611067563,
336
+ "learning_rate": 8.360489289678585e-06,
337
+ "loss": 2.9402,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 5.506785974818791,
343
+ "learning_rate": 8.406206186877936e-06,
344
+ "loss": 3.382,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 4.68603207809794,
350
+ "learning_rate": 8.450980400142568e-06,
351
+ "loss": 2.9918,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 5.124033394817131,
357
+ "learning_rate": 8.494850021680093e-06,
358
+ "loss": 3.3202,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 4.293001183481895,
364
+ "learning_rate": 8.537850880489681e-06,
365
+ "loss": 2.8519,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 4.382596858902394,
371
+ "learning_rate": 8.580016718173996e-06,
372
+ "loss": 2.9683,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 4.3176263388044696,
378
+ "learning_rate": 8.621379348003945e-06,
379
+ "loss": 2.9257,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 4.5250022171605195,
385
+ "learning_rate": 8.661968799114844e-06,
386
+ "loss": 3.0556,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 4.429424190600661,
392
+ "learning_rate": 8.701813447471218e-06,
393
+ "loss": 2.9513,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 4.349652568052827,
399
+ "learning_rate": 8.740940135031001e-06,
400
+ "loss": 2.9029,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 4.299227871435445,
406
+ "learning_rate": 8.779374278362457e-06,
407
+ "loss": 2.5989,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 4.562461330302201,
413
+ "learning_rate": 8.817139967814684e-06,
414
+ "loss": 2.8158,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 4.606987182758338,
420
+ "learning_rate": 8.854260058210721e-06,
421
+ "loss": 2.6272,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 4.9420031522511545,
427
+ "learning_rate": 8.890756251918216e-06,
428
+ "loss": 2.5488,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 4.706462297046012,
434
+ "learning_rate": 8.926649175053834e-06,
435
+ "loss": 2.3575,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 4.862820204363494,
441
+ "learning_rate": 8.961958447491269e-06,
442
+ "loss": 2.2952,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 4.911045913397774,
448
+ "learning_rate": 8.996702747267908e-06,
449
+ "loss": 2.1768,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 5.46978680182973,
455
+ "learning_rate": 9.030899869919434e-06,
456
+ "loss": 2.2528,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 5.847558397227374,
462
+ "learning_rate": 9.064566783214276e-06,
463
+ "loss": 2.2401,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 5.984440656257,
469
+ "learning_rate": 9.097719677709343e-06,
470
+ "loss": 2.156,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 6.146172189799918,
476
+ "learning_rate": 9.130374013504131e-06,
477
+ "loss": 2.0059,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 5.725706778130614,
483
+ "learning_rate": 9.162544563531182e-06,
484
+ "loss": 1.7756,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 6.479060263133115,
490
+ "learning_rate": 9.194245453686277e-06,
491
+ "loss": 1.7651,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 7.319291050667066,
497
+ "learning_rate": 9.225490200071284e-06,
498
+ "loss": 1.7712,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 6.913275412032087,
504
+ "learning_rate": 9.256291743595376e-06,
505
+ "loss": 1.709,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 6.600657239614328,
511
+ "learning_rate": 9.28666248215634e-06,
512
+ "loss": 1.3731,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 7.301483724647945,
518
+ "learning_rate": 9.316614300602277e-06,
519
+ "loss": 1.4166,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 7.154933225265475,
525
+ "learning_rate": 9.346158598654881e-06,
526
+ "loss": 1.2797,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 8.248472592538771,
532
+ "learning_rate": 9.375306316958499e-06,
533
+ "loss": 1.2082,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 7.444479096112177,
539
+ "learning_rate": 9.404067961403957e-06,
540
+ "loss": 1.0402,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 6.819760434594012,
546
+ "learning_rate": 9.432453625862409e-06,
547
+ "loss": 0.8244,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 6.894760862855001,
553
+ "learning_rate": 9.460473013452401e-06,
554
+ "loss": 0.8345,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 6.001848571839919,
560
+ "learning_rate": 9.488135456452207e-06,
561
+ "loss": 0.6839,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 5.709147411501981,
567
+ "learning_rate": 9.515449934959717e-06,
568
+ "loss": 0.6567,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 4.128977158730638,
574
+ "learning_rate": 9.542425094393249e-06,
575
+ "loss": 0.545,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 2.604915806147427,
581
+ "learning_rate": 9.569069261918582e-06,
582
+ "loss": 0.4596,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 2.039939253407506,
588
+ "learning_rate": 9.59539046188037e-06,
589
+ "loss": 0.452,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 2.0398988141415337,
595
+ "learning_rate": 9.621396430309407e-06,
596
+ "loss": 0.4538,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 2.37589477950211,
602
+ "learning_rate": 9.647094628571464e-06,
603
+ "loss": 0.4505,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 2.80580920047501,
609
+ "learning_rate": 9.672492256217837e-06,
610
+ "loss": 0.5284,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 2.3687428819051197,
616
+ "learning_rate": 9.697596263093091e-06,
617
+ "loss": 0.4371,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 1.6362502854757155,
623
+ "learning_rate": 9.722413360750844e-06,
624
+ "loss": 0.3652,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 1.5360860168740427,
630
+ "learning_rate": 9.746950033224562e-06,
631
+ "loss": 0.3235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 1.7245475092642693,
637
+ "learning_rate": 9.771212547196623e-06,
638
+ "loss": 0.3072,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 1.4493496982196852,
644
+ "learning_rate": 9.795206961605467e-06,
645
+ "loss": 0.2474,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 1.1662262130552072,
651
+ "learning_rate": 9.818939136727777e-06,
652
+ "loss": 0.2684,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 1.1727132215390659,
658
+ "learning_rate": 9.842414742769675e-06,
659
+ "loss": 0.3456,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.8435059300379855,
665
+ "learning_rate": 9.865639267998493e-06,
666
+ "loss": 0.227,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.8593375804730568,
672
+ "learning_rate": 9.888618026444238e-06,
673
+ "loss": 0.1985,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 1.0673772841412472,
679
+ "learning_rate": 9.911356165197841e-06,
680
+ "loss": 0.3195,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.9341285801648793,
686
+ "learning_rate": 9.933858671331224e-06,
687
+ "loss": 0.213,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.7197728549764331,
693
+ "learning_rate": 9.956130378462474e-06,
694
+ "loss": 0.2067,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.5655901060353195,
700
+ "learning_rate": 9.978175972987748e-06,
701
+ "loss": 0.1708,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.4681745812066334,
707
+ "learning_rate": 9.999999999999999e-06,
708
+ "loss": 0.1983,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.4488180280567293,
714
+ "learning_rate": 1e-05,
715
+ "loss": 0.1401,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.43194512376224187,
721
+ "learning_rate": 1e-05,
722
+ "loss": 0.1097,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.3754480982834532,
728
+ "learning_rate": 1e-05,
729
+ "loss": 0.1531,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.34151633602448267,
735
+ "learning_rate": 1e-05,
736
+ "loss": 0.1685,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.26356638458244175,
742
+ "learning_rate": 1e-05,
743
+ "loss": 0.1104,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.27641004897246113,
749
+ "learning_rate": 1e-05,
750
+ "loss": 0.1589,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.1639383504796773,
756
+ "learning_rate": 1e-05,
757
+ "loss": 0.1064,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.24233145434818837,
763
+ "learning_rate": 1e-05,
764
+ "loss": 0.1385,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.16015184210317215,
770
+ "learning_rate": 1e-05,
771
+ "loss": 0.121,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.14931644417242712,
777
+ "learning_rate": 1e-05,
778
+ "loss": 0.1117,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.15078311335939154,
784
+ "learning_rate": 1e-05,
785
+ "loss": 0.1034,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.16714082761639734,
791
+ "learning_rate": 1e-05,
792
+ "loss": 0.115,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.12479711996187942,
798
+ "learning_rate": 1e-05,
799
+ "loss": 0.1029,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.14783351137940065,
805
+ "learning_rate": 1e-05,
806
+ "loss": 0.0987,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.11311876630863582,
812
+ "learning_rate": 1e-05,
813
+ "loss": 0.0911,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.1238329581090649,
819
+ "learning_rate": 1e-05,
820
+ "loss": 0.1095,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.11117413394533605,
826
+ "learning_rate": 1e-05,
827
+ "loss": 0.0968,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.09247708923706752,
833
+ "learning_rate": 1e-05,
834
+ "loss": 0.0985,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.12028574166046906,
840
+ "learning_rate": 1e-05,
841
+ "loss": 0.1085,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.075460717991084,
847
+ "learning_rate": 1e-05,
848
+ "loss": 0.1007,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.1930335796969662,
854
+ "learning_rate": 1e-05,
855
+ "loss": 0.1438,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.11451251015868702,
861
+ "learning_rate": 1e-05,
862
+ "loss": 0.1365,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.09360332240252384,
868
+ "learning_rate": 1e-05,
869
+ "loss": 0.1039,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.13162505626586696,
875
+ "learning_rate": 1e-05,
876
+ "loss": 0.1132,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.1329223725298499,
882
+ "learning_rate": 1e-05,
883
+ "loss": 0.1153,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.09522360247894453,
889
+ "learning_rate": 1e-05,
890
+ "loss": 0.1264,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.12467359977458509,
896
+ "learning_rate": 1e-05,
897
+ "loss": 0.0866,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.08853379791954709,
903
+ "learning_rate": 1e-05,
904
+ "loss": 0.107,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.16050358070185106,
910
+ "learning_rate": 1e-05,
911
+ "loss": 0.1134,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.10331318962336627,
917
+ "learning_rate": 1e-05,
918
+ "loss": 0.1217,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.08498886624952962,
924
+ "learning_rate": 1e-05,
925
+ "loss": 0.12,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.09918910544874306,
931
+ "learning_rate": 1e-05,
932
+ "loss": 0.1173,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.0751198135696547,
938
+ "learning_rate": 1e-05,
939
+ "loss": 0.0973,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.07959218402066412,
945
+ "learning_rate": 1e-05,
946
+ "loss": 0.0992,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.14419628324779726,
952
+ "learning_rate": 1e-05,
953
+ "loss": 0.0856,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.07894542967774888,
959
+ "learning_rate": 1e-05,
960
+ "loss": 0.1193,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.08735606763938318,
966
+ "learning_rate": 1e-05,
967
+ "loss": 0.1061,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.12344637986728384,
973
+ "learning_rate": 1e-05,
974
+ "loss": 0.1184,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.07797745242316644,
980
+ "learning_rate": 1e-05,
981
+ "loss": 0.0959,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.10065236259356937,
987
+ "learning_rate": 1e-05,
988
+ "loss": 0.0957,
989
+ "step": 140
990
+ }
991
+ ],
992
+ "logging_steps": 1,
993
+ "max_steps": 301,
994
+ "num_input_tokens_seen": 0,
995
+ "num_train_epochs": 3,
996
+ "save_steps": 20,
997
+ "stateful_callbacks": {
998
+ "TrainerControl": {
999
+ "args": {
1000
+ "should_epoch_stop": false,
1001
+ "should_evaluate": false,
1002
+ "should_log": false,
1003
+ "should_save": true,
1004
+ "should_training_stop": false
1005
+ },
1006
+ "attributes": {}
1007
+ }
1008
+ },
1009
+ "total_flos": 1.9872207486907843e+18,
1010
+ "train_batch_size": 16,
1011
+ "trial_name": null,
1012
+ "trial_params": null
1013
+ }
checkpoint-140/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9430fb289d52200b279530dc31f818fe016b81f2a2feb4d356e75541590998de
3
+ size 6840
checkpoint-160/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-160/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-160/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad7f3936a96df66a08461026a1c7af87cb6ee577462637e0549583bc4276a78b
3
+ size 1138856856
checkpoint-160/trainer_state.json ADDED
@@ -0,0 +1,1153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.3653333333333333,
5
+ "eval_steps": 500,
6
+ "global_step": 160,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 160.11701043689894,
14
+ "learning_rate": 0.0,
15
+ "loss": 32.4968,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 157.24779534424323,
21
+ "learning_rate": 1.5051499783199057e-06,
22
+ "loss": 31.6979,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 157.9465272449825,
28
+ "learning_rate": 2.385606273598312e-06,
29
+ "loss": 31.8828,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 160.2154859965946,
35
+ "learning_rate": 3.0102999566398115e-06,
36
+ "loss": 31.9681,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 158.5305446712084,
42
+ "learning_rate": 3.4948500216800934e-06,
43
+ "loss": 31.3717,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 155.50243039700376,
49
+ "learning_rate": 3.890756251918218e-06,
50
+ "loss": 30.5348,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 168.6887446693614,
56
+ "learning_rate": 4.225490200071284e-06,
57
+ "loss": 31.3845,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 164.2631689450651,
63
+ "learning_rate": 4.515449934959717e-06,
64
+ "loss": 30.5243,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 174.1878139573776,
70
+ "learning_rate": 4.771212547196624e-06,
71
+ "loss": 30.0138,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 177.9519334680014,
77
+ "learning_rate": 4.9999999999999996e-06,
78
+ "loss": 29.6143,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 183.57104380865735,
84
+ "learning_rate": 5.206963425791125e-06,
85
+ "loss": 28.8718,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 186.4090344511231,
91
+ "learning_rate": 5.395906230238124e-06,
92
+ "loss": 26.1695,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 198.17161320746723,
98
+ "learning_rate": 5.5697167615341825e-06,
99
+ "loss": 26.1266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 182.4443087115901,
105
+ "learning_rate": 5.730640178391189e-06,
106
+ "loss": 24.2121,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 159.38105380659272,
112
+ "learning_rate": 5.880456295278406e-06,
113
+ "loss": 22.5796,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 142.82387126501297,
119
+ "learning_rate": 6.020599913279623e-06,
120
+ "loss": 21.1346,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 123.86394296641578,
126
+ "learning_rate": 6.15224460689137e-06,
127
+ "loss": 19.8457,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 112.3988260336824,
133
+ "learning_rate": 6.276362525516529e-06,
134
+ "loss": 18.7824,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 120.96712330991012,
140
+ "learning_rate": 6.393768004764144e-06,
141
+ "loss": 18.0207,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 129.42692949353702,
147
+ "learning_rate": 6.505149978319905e-06,
148
+ "loss": 16.8355,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 120.65595457746791,
154
+ "learning_rate": 6.611096473669596e-06,
155
+ "loss": 15.252,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 133.05280466087515,
161
+ "learning_rate": 6.712113404111031e-06,
162
+ "loss": 14.1391,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 127.95029628849048,
168
+ "learning_rate": 6.808639180087963e-06,
169
+ "loss": 12.9566,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 108.83495245094748,
175
+ "learning_rate": 6.90105620855803e-06,
176
+ "loss": 11.8743,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 99.90727146021455,
182
+ "learning_rate": 6.989700043360187e-06,
183
+ "loss": 10.962,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 98.37126740059823,
189
+ "learning_rate": 7.074866739854089e-06,
190
+ "loss": 9.9919,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 92.26708429201608,
196
+ "learning_rate": 7.156818820794936e-06,
197
+ "loss": 8.8811,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 83.36099898839835,
203
+ "learning_rate": 7.235790156711096e-06,
204
+ "loss": 7.7806,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 68.07500315598597,
210
+ "learning_rate": 7.3119899894947795e-06,
211
+ "loss": 7.0528,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 69.58960332280246,
217
+ "learning_rate": 7.385606273598311e-06,
218
+ "loss": 6.3683,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 68.77532204123075,
224
+ "learning_rate": 7.456808469171363e-06,
225
+ "loss": 6.1635,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 66.29676636510072,
231
+ "learning_rate": 7.5257498915995295e-06,
232
+ "loss": 4.711,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 42.87145091679237,
238
+ "learning_rate": 7.592569699389437e-06,
239
+ "loss": 4.5119,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 26.2592350291551,
245
+ "learning_rate": 7.657394585211274e-06,
246
+ "loss": 4.31,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 15.35959008067237,
252
+ "learning_rate": 7.720340221751376e-06,
253
+ "loss": 4.0001,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.50847651865227,
259
+ "learning_rate": 7.781512503836437e-06,
260
+ "loss": 3.5723,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 6.562581089063746,
266
+ "learning_rate": 7.841008620334974e-06,
267
+ "loss": 3.9254,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 5.6145595722250095,
273
+ "learning_rate": 7.89891798308405e-06,
274
+ "loss": 3.8746,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 5.385367220486204,
280
+ "learning_rate": 7.955323035132495e-06,
281
+ "loss": 3.8128,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 5.403447124703616,
287
+ "learning_rate": 8.010299956639811e-06,
288
+ "loss": 3.885,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 5.48242204895128,
294
+ "learning_rate": 8.063919283598677e-06,
295
+ "loss": 3.8048,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 5.5525098950513865,
301
+ "learning_rate": 8.116246451989503e-06,
302
+ "loss": 3.7508,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 5.354384520535484,
308
+ "learning_rate": 8.167342277897933e-06,
309
+ "loss": 3.5069,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 5.46272338131107,
315
+ "learning_rate": 8.217263382430936e-06,
316
+ "loss": 3.6747,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 4.798550688968453,
322
+ "learning_rate": 8.266062568876717e-06,
323
+ "loss": 3.1609,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 5.755104452953421,
329
+ "learning_rate": 8.31378915840787e-06,
330
+ "loss": 3.5733,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 4.618763611067563,
336
+ "learning_rate": 8.360489289678585e-06,
337
+ "loss": 2.9402,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 5.506785974818791,
343
+ "learning_rate": 8.406206186877936e-06,
344
+ "loss": 3.382,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 4.68603207809794,
350
+ "learning_rate": 8.450980400142568e-06,
351
+ "loss": 2.9918,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 5.124033394817131,
357
+ "learning_rate": 8.494850021680093e-06,
358
+ "loss": 3.3202,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 4.293001183481895,
364
+ "learning_rate": 8.537850880489681e-06,
365
+ "loss": 2.8519,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 4.382596858902394,
371
+ "learning_rate": 8.580016718173996e-06,
372
+ "loss": 2.9683,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 4.3176263388044696,
378
+ "learning_rate": 8.621379348003945e-06,
379
+ "loss": 2.9257,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 4.5250022171605195,
385
+ "learning_rate": 8.661968799114844e-06,
386
+ "loss": 3.0556,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 4.429424190600661,
392
+ "learning_rate": 8.701813447471218e-06,
393
+ "loss": 2.9513,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 4.349652568052827,
399
+ "learning_rate": 8.740940135031001e-06,
400
+ "loss": 2.9029,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 4.299227871435445,
406
+ "learning_rate": 8.779374278362457e-06,
407
+ "loss": 2.5989,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 4.562461330302201,
413
+ "learning_rate": 8.817139967814684e-06,
414
+ "loss": 2.8158,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 4.606987182758338,
420
+ "learning_rate": 8.854260058210721e-06,
421
+ "loss": 2.6272,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 4.9420031522511545,
427
+ "learning_rate": 8.890756251918216e-06,
428
+ "loss": 2.5488,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 4.706462297046012,
434
+ "learning_rate": 8.926649175053834e-06,
435
+ "loss": 2.3575,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 4.862820204363494,
441
+ "learning_rate": 8.961958447491269e-06,
442
+ "loss": 2.2952,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 4.911045913397774,
448
+ "learning_rate": 8.996702747267908e-06,
449
+ "loss": 2.1768,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 5.46978680182973,
455
+ "learning_rate": 9.030899869919434e-06,
456
+ "loss": 2.2528,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 5.847558397227374,
462
+ "learning_rate": 9.064566783214276e-06,
463
+ "loss": 2.2401,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 5.984440656257,
469
+ "learning_rate": 9.097719677709343e-06,
470
+ "loss": 2.156,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 6.146172189799918,
476
+ "learning_rate": 9.130374013504131e-06,
477
+ "loss": 2.0059,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 5.725706778130614,
483
+ "learning_rate": 9.162544563531182e-06,
484
+ "loss": 1.7756,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 6.479060263133115,
490
+ "learning_rate": 9.194245453686277e-06,
491
+ "loss": 1.7651,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 7.319291050667066,
497
+ "learning_rate": 9.225490200071284e-06,
498
+ "loss": 1.7712,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 6.913275412032087,
504
+ "learning_rate": 9.256291743595376e-06,
505
+ "loss": 1.709,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 6.600657239614328,
511
+ "learning_rate": 9.28666248215634e-06,
512
+ "loss": 1.3731,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 7.301483724647945,
518
+ "learning_rate": 9.316614300602277e-06,
519
+ "loss": 1.4166,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 7.154933225265475,
525
+ "learning_rate": 9.346158598654881e-06,
526
+ "loss": 1.2797,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 8.248472592538771,
532
+ "learning_rate": 9.375306316958499e-06,
533
+ "loss": 1.2082,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 7.444479096112177,
539
+ "learning_rate": 9.404067961403957e-06,
540
+ "loss": 1.0402,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 6.819760434594012,
546
+ "learning_rate": 9.432453625862409e-06,
547
+ "loss": 0.8244,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 6.894760862855001,
553
+ "learning_rate": 9.460473013452401e-06,
554
+ "loss": 0.8345,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 6.001848571839919,
560
+ "learning_rate": 9.488135456452207e-06,
561
+ "loss": 0.6839,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 5.709147411501981,
567
+ "learning_rate": 9.515449934959717e-06,
568
+ "loss": 0.6567,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 4.128977158730638,
574
+ "learning_rate": 9.542425094393249e-06,
575
+ "loss": 0.545,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 2.604915806147427,
581
+ "learning_rate": 9.569069261918582e-06,
582
+ "loss": 0.4596,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 2.039939253407506,
588
+ "learning_rate": 9.59539046188037e-06,
589
+ "loss": 0.452,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 2.0398988141415337,
595
+ "learning_rate": 9.621396430309407e-06,
596
+ "loss": 0.4538,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 2.37589477950211,
602
+ "learning_rate": 9.647094628571464e-06,
603
+ "loss": 0.4505,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 2.80580920047501,
609
+ "learning_rate": 9.672492256217837e-06,
610
+ "loss": 0.5284,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 2.3687428819051197,
616
+ "learning_rate": 9.697596263093091e-06,
617
+ "loss": 0.4371,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 1.6362502854757155,
623
+ "learning_rate": 9.722413360750844e-06,
624
+ "loss": 0.3652,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 1.5360860168740427,
630
+ "learning_rate": 9.746950033224562e-06,
631
+ "loss": 0.3235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 1.7245475092642693,
637
+ "learning_rate": 9.771212547196623e-06,
638
+ "loss": 0.3072,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 1.4493496982196852,
644
+ "learning_rate": 9.795206961605467e-06,
645
+ "loss": 0.2474,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 1.1662262130552072,
651
+ "learning_rate": 9.818939136727777e-06,
652
+ "loss": 0.2684,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 1.1727132215390659,
658
+ "learning_rate": 9.842414742769675e-06,
659
+ "loss": 0.3456,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.8435059300379855,
665
+ "learning_rate": 9.865639267998493e-06,
666
+ "loss": 0.227,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.8593375804730568,
672
+ "learning_rate": 9.888618026444238e-06,
673
+ "loss": 0.1985,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 1.0673772841412472,
679
+ "learning_rate": 9.911356165197841e-06,
680
+ "loss": 0.3195,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.9341285801648793,
686
+ "learning_rate": 9.933858671331224e-06,
687
+ "loss": 0.213,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.7197728549764331,
693
+ "learning_rate": 9.956130378462474e-06,
694
+ "loss": 0.2067,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.5655901060353195,
700
+ "learning_rate": 9.978175972987748e-06,
701
+ "loss": 0.1708,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.4681745812066334,
707
+ "learning_rate": 9.999999999999999e-06,
708
+ "loss": 0.1983,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.4488180280567293,
714
+ "learning_rate": 1e-05,
715
+ "loss": 0.1401,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.43194512376224187,
721
+ "learning_rate": 1e-05,
722
+ "loss": 0.1097,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.3754480982834532,
728
+ "learning_rate": 1e-05,
729
+ "loss": 0.1531,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.34151633602448267,
735
+ "learning_rate": 1e-05,
736
+ "loss": 0.1685,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.26356638458244175,
742
+ "learning_rate": 1e-05,
743
+ "loss": 0.1104,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.27641004897246113,
749
+ "learning_rate": 1e-05,
750
+ "loss": 0.1589,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.1639383504796773,
756
+ "learning_rate": 1e-05,
757
+ "loss": 0.1064,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.24233145434818837,
763
+ "learning_rate": 1e-05,
764
+ "loss": 0.1385,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.16015184210317215,
770
+ "learning_rate": 1e-05,
771
+ "loss": 0.121,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.14931644417242712,
777
+ "learning_rate": 1e-05,
778
+ "loss": 0.1117,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.15078311335939154,
784
+ "learning_rate": 1e-05,
785
+ "loss": 0.1034,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.16714082761639734,
791
+ "learning_rate": 1e-05,
792
+ "loss": 0.115,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.12479711996187942,
798
+ "learning_rate": 1e-05,
799
+ "loss": 0.1029,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.14783351137940065,
805
+ "learning_rate": 1e-05,
806
+ "loss": 0.0987,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.11311876630863582,
812
+ "learning_rate": 1e-05,
813
+ "loss": 0.0911,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.1238329581090649,
819
+ "learning_rate": 1e-05,
820
+ "loss": 0.1095,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.11117413394533605,
826
+ "learning_rate": 1e-05,
827
+ "loss": 0.0968,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.09247708923706752,
833
+ "learning_rate": 1e-05,
834
+ "loss": 0.0985,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.12028574166046906,
840
+ "learning_rate": 1e-05,
841
+ "loss": 0.1085,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.075460717991084,
847
+ "learning_rate": 1e-05,
848
+ "loss": 0.1007,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.1930335796969662,
854
+ "learning_rate": 1e-05,
855
+ "loss": 0.1438,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.11451251015868702,
861
+ "learning_rate": 1e-05,
862
+ "loss": 0.1365,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.09360332240252384,
868
+ "learning_rate": 1e-05,
869
+ "loss": 0.1039,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.13162505626586696,
875
+ "learning_rate": 1e-05,
876
+ "loss": 0.1132,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.1329223725298499,
882
+ "learning_rate": 1e-05,
883
+ "loss": 0.1153,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.09522360247894453,
889
+ "learning_rate": 1e-05,
890
+ "loss": 0.1264,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.12467359977458509,
896
+ "learning_rate": 1e-05,
897
+ "loss": 0.0866,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.08853379791954709,
903
+ "learning_rate": 1e-05,
904
+ "loss": 0.107,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.16050358070185106,
910
+ "learning_rate": 1e-05,
911
+ "loss": 0.1134,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.10331318962336627,
917
+ "learning_rate": 1e-05,
918
+ "loss": 0.1217,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.08498886624952962,
924
+ "learning_rate": 1e-05,
925
+ "loss": 0.12,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.09918910544874306,
931
+ "learning_rate": 1e-05,
932
+ "loss": 0.1173,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.0751198135696547,
938
+ "learning_rate": 1e-05,
939
+ "loss": 0.0973,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.07959218402066412,
945
+ "learning_rate": 1e-05,
946
+ "loss": 0.0992,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.14419628324779726,
952
+ "learning_rate": 1e-05,
953
+ "loss": 0.0856,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.07894542967774888,
959
+ "learning_rate": 1e-05,
960
+ "loss": 0.1193,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.08735606763938318,
966
+ "learning_rate": 1e-05,
967
+ "loss": 0.1061,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.12344637986728384,
973
+ "learning_rate": 1e-05,
974
+ "loss": 0.1184,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.07797745242316644,
980
+ "learning_rate": 1e-05,
981
+ "loss": 0.0959,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.10065236259356937,
987
+ "learning_rate": 1e-05,
988
+ "loss": 0.0957,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.06472006342138571,
994
+ "learning_rate": 1e-05,
995
+ "loss": 0.0721,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.08080002696086562,
1001
+ "learning_rate": 1e-05,
1002
+ "loss": 0.1073,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.10400160039217118,
1008
+ "learning_rate": 1e-05,
1009
+ "loss": 0.1227,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.08719509476650818,
1015
+ "learning_rate": 1e-05,
1016
+ "loss": 0.114,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.08431635436674337,
1022
+ "learning_rate": 1e-05,
1023
+ "loss": 0.1303,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.23947926607305503,
1029
+ "learning_rate": 1e-05,
1030
+ "loss": 0.1199,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.08794721265212341,
1036
+ "learning_rate": 1e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.08063747277184712,
1043
+ "learning_rate": 1e-05,
1044
+ "loss": 0.1062,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.06832693897193236,
1050
+ "learning_rate": 1e-05,
1051
+ "loss": 0.0842,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.07037053759395089,
1057
+ "learning_rate": 1e-05,
1058
+ "loss": 0.0971,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.08753063334098339,
1064
+ "learning_rate": 1e-05,
1065
+ "loss": 0.085,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.11381804369240754,
1071
+ "learning_rate": 1e-05,
1072
+ "loss": 0.1156,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.07203805377255211,
1078
+ "learning_rate": 1e-05,
1079
+ "loss": 0.0951,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.1156784206459358,
1085
+ "learning_rate": 1e-05,
1086
+ "loss": 0.1557,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.11353874538174968,
1092
+ "learning_rate": 1e-05,
1093
+ "loss": 0.1284,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.06675505890811795,
1099
+ "learning_rate": 1e-05,
1100
+ "loss": 0.089,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.07642955477275162,
1106
+ "learning_rate": 1e-05,
1107
+ "loss": 0.0825,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.07196529265355209,
1113
+ "learning_rate": 1e-05,
1114
+ "loss": 0.0885,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.08651497112727735,
1120
+ "learning_rate": 1e-05,
1121
+ "loss": 0.0934,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.07249320769144564,
1127
+ "learning_rate": 1e-05,
1128
+ "loss": 0.102,
1129
+ "step": 160
1130
+ }
1131
+ ],
1132
+ "logging_steps": 1,
1133
+ "max_steps": 301,
1134
+ "num_input_tokens_seen": 0,
1135
+ "num_train_epochs": 3,
1136
+ "save_steps": 20,
1137
+ "stateful_callbacks": {
1138
+ "TrainerControl": {
1139
+ "args": {
1140
+ "should_epoch_stop": false,
1141
+ "should_evaluate": false,
1142
+ "should_log": false,
1143
+ "should_save": true,
1144
+ "should_training_stop": false
1145
+ },
1146
+ "attributes": {}
1147
+ }
1148
+ },
1149
+ "total_flos": 2.273910921652863e+18,
1150
+ "train_batch_size": 16,
1151
+ "trial_name": null,
1152
+ "trial_params": null
1153
+ }
checkpoint-160/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9430fb289d52200b279530dc31f818fe016b81f2a2feb4d356e75541590998de
3
+ size 6840
checkpoint-180/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-180/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-180/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:494f39b81a093fd2994ff97e7d7bb6de0c800f86be7f9dc8e6b228b20f109ad4
3
+ size 1138856856
checkpoint-180/trainer_state.json ADDED
@@ -0,0 +1,1293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.536,
5
+ "eval_steps": 500,
6
+ "global_step": 180,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 160.11701043689894,
14
+ "learning_rate": 0.0,
15
+ "loss": 32.4968,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 157.24779534424323,
21
+ "learning_rate": 1.5051499783199057e-06,
22
+ "loss": 31.6979,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 157.9465272449825,
28
+ "learning_rate": 2.385606273598312e-06,
29
+ "loss": 31.8828,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 160.2154859965946,
35
+ "learning_rate": 3.0102999566398115e-06,
36
+ "loss": 31.9681,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 158.5305446712084,
42
+ "learning_rate": 3.4948500216800934e-06,
43
+ "loss": 31.3717,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 155.50243039700376,
49
+ "learning_rate": 3.890756251918218e-06,
50
+ "loss": 30.5348,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 168.6887446693614,
56
+ "learning_rate": 4.225490200071284e-06,
57
+ "loss": 31.3845,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 164.2631689450651,
63
+ "learning_rate": 4.515449934959717e-06,
64
+ "loss": 30.5243,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 174.1878139573776,
70
+ "learning_rate": 4.771212547196624e-06,
71
+ "loss": 30.0138,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 177.9519334680014,
77
+ "learning_rate": 4.9999999999999996e-06,
78
+ "loss": 29.6143,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 183.57104380865735,
84
+ "learning_rate": 5.206963425791125e-06,
85
+ "loss": 28.8718,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 186.4090344511231,
91
+ "learning_rate": 5.395906230238124e-06,
92
+ "loss": 26.1695,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 198.17161320746723,
98
+ "learning_rate": 5.5697167615341825e-06,
99
+ "loss": 26.1266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 182.4443087115901,
105
+ "learning_rate": 5.730640178391189e-06,
106
+ "loss": 24.2121,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 159.38105380659272,
112
+ "learning_rate": 5.880456295278406e-06,
113
+ "loss": 22.5796,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 142.82387126501297,
119
+ "learning_rate": 6.020599913279623e-06,
120
+ "loss": 21.1346,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 123.86394296641578,
126
+ "learning_rate": 6.15224460689137e-06,
127
+ "loss": 19.8457,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 112.3988260336824,
133
+ "learning_rate": 6.276362525516529e-06,
134
+ "loss": 18.7824,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 120.96712330991012,
140
+ "learning_rate": 6.393768004764144e-06,
141
+ "loss": 18.0207,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 129.42692949353702,
147
+ "learning_rate": 6.505149978319905e-06,
148
+ "loss": 16.8355,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 120.65595457746791,
154
+ "learning_rate": 6.611096473669596e-06,
155
+ "loss": 15.252,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 133.05280466087515,
161
+ "learning_rate": 6.712113404111031e-06,
162
+ "loss": 14.1391,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 127.95029628849048,
168
+ "learning_rate": 6.808639180087963e-06,
169
+ "loss": 12.9566,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 108.83495245094748,
175
+ "learning_rate": 6.90105620855803e-06,
176
+ "loss": 11.8743,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 99.90727146021455,
182
+ "learning_rate": 6.989700043360187e-06,
183
+ "loss": 10.962,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 98.37126740059823,
189
+ "learning_rate": 7.074866739854089e-06,
190
+ "loss": 9.9919,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 92.26708429201608,
196
+ "learning_rate": 7.156818820794936e-06,
197
+ "loss": 8.8811,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 83.36099898839835,
203
+ "learning_rate": 7.235790156711096e-06,
204
+ "loss": 7.7806,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 68.07500315598597,
210
+ "learning_rate": 7.3119899894947795e-06,
211
+ "loss": 7.0528,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 69.58960332280246,
217
+ "learning_rate": 7.385606273598311e-06,
218
+ "loss": 6.3683,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 68.77532204123075,
224
+ "learning_rate": 7.456808469171363e-06,
225
+ "loss": 6.1635,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 66.29676636510072,
231
+ "learning_rate": 7.5257498915995295e-06,
232
+ "loss": 4.711,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 42.87145091679237,
238
+ "learning_rate": 7.592569699389437e-06,
239
+ "loss": 4.5119,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 26.2592350291551,
245
+ "learning_rate": 7.657394585211274e-06,
246
+ "loss": 4.31,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 15.35959008067237,
252
+ "learning_rate": 7.720340221751376e-06,
253
+ "loss": 4.0001,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.50847651865227,
259
+ "learning_rate": 7.781512503836437e-06,
260
+ "loss": 3.5723,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 6.562581089063746,
266
+ "learning_rate": 7.841008620334974e-06,
267
+ "loss": 3.9254,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 5.6145595722250095,
273
+ "learning_rate": 7.89891798308405e-06,
274
+ "loss": 3.8746,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 5.385367220486204,
280
+ "learning_rate": 7.955323035132495e-06,
281
+ "loss": 3.8128,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 5.403447124703616,
287
+ "learning_rate": 8.010299956639811e-06,
288
+ "loss": 3.885,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 5.48242204895128,
294
+ "learning_rate": 8.063919283598677e-06,
295
+ "loss": 3.8048,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 5.5525098950513865,
301
+ "learning_rate": 8.116246451989503e-06,
302
+ "loss": 3.7508,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 5.354384520535484,
308
+ "learning_rate": 8.167342277897933e-06,
309
+ "loss": 3.5069,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 5.46272338131107,
315
+ "learning_rate": 8.217263382430936e-06,
316
+ "loss": 3.6747,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 4.798550688968453,
322
+ "learning_rate": 8.266062568876717e-06,
323
+ "loss": 3.1609,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 5.755104452953421,
329
+ "learning_rate": 8.31378915840787e-06,
330
+ "loss": 3.5733,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 4.618763611067563,
336
+ "learning_rate": 8.360489289678585e-06,
337
+ "loss": 2.9402,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 5.506785974818791,
343
+ "learning_rate": 8.406206186877936e-06,
344
+ "loss": 3.382,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 4.68603207809794,
350
+ "learning_rate": 8.450980400142568e-06,
351
+ "loss": 2.9918,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 5.124033394817131,
357
+ "learning_rate": 8.494850021680093e-06,
358
+ "loss": 3.3202,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 4.293001183481895,
364
+ "learning_rate": 8.537850880489681e-06,
365
+ "loss": 2.8519,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 4.382596858902394,
371
+ "learning_rate": 8.580016718173996e-06,
372
+ "loss": 2.9683,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 4.3176263388044696,
378
+ "learning_rate": 8.621379348003945e-06,
379
+ "loss": 2.9257,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 4.5250022171605195,
385
+ "learning_rate": 8.661968799114844e-06,
386
+ "loss": 3.0556,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 4.429424190600661,
392
+ "learning_rate": 8.701813447471218e-06,
393
+ "loss": 2.9513,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 4.349652568052827,
399
+ "learning_rate": 8.740940135031001e-06,
400
+ "loss": 2.9029,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 4.299227871435445,
406
+ "learning_rate": 8.779374278362457e-06,
407
+ "loss": 2.5989,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 4.562461330302201,
413
+ "learning_rate": 8.817139967814684e-06,
414
+ "loss": 2.8158,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 4.606987182758338,
420
+ "learning_rate": 8.854260058210721e-06,
421
+ "loss": 2.6272,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 4.9420031522511545,
427
+ "learning_rate": 8.890756251918216e-06,
428
+ "loss": 2.5488,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 4.706462297046012,
434
+ "learning_rate": 8.926649175053834e-06,
435
+ "loss": 2.3575,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 4.862820204363494,
441
+ "learning_rate": 8.961958447491269e-06,
442
+ "loss": 2.2952,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 4.911045913397774,
448
+ "learning_rate": 8.996702747267908e-06,
449
+ "loss": 2.1768,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 5.46978680182973,
455
+ "learning_rate": 9.030899869919434e-06,
456
+ "loss": 2.2528,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 5.847558397227374,
462
+ "learning_rate": 9.064566783214276e-06,
463
+ "loss": 2.2401,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 5.984440656257,
469
+ "learning_rate": 9.097719677709343e-06,
470
+ "loss": 2.156,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 6.146172189799918,
476
+ "learning_rate": 9.130374013504131e-06,
477
+ "loss": 2.0059,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 5.725706778130614,
483
+ "learning_rate": 9.162544563531182e-06,
484
+ "loss": 1.7756,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 6.479060263133115,
490
+ "learning_rate": 9.194245453686277e-06,
491
+ "loss": 1.7651,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 7.319291050667066,
497
+ "learning_rate": 9.225490200071284e-06,
498
+ "loss": 1.7712,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 6.913275412032087,
504
+ "learning_rate": 9.256291743595376e-06,
505
+ "loss": 1.709,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 6.600657239614328,
511
+ "learning_rate": 9.28666248215634e-06,
512
+ "loss": 1.3731,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 7.301483724647945,
518
+ "learning_rate": 9.316614300602277e-06,
519
+ "loss": 1.4166,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 7.154933225265475,
525
+ "learning_rate": 9.346158598654881e-06,
526
+ "loss": 1.2797,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 8.248472592538771,
532
+ "learning_rate": 9.375306316958499e-06,
533
+ "loss": 1.2082,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 7.444479096112177,
539
+ "learning_rate": 9.404067961403957e-06,
540
+ "loss": 1.0402,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 6.819760434594012,
546
+ "learning_rate": 9.432453625862409e-06,
547
+ "loss": 0.8244,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 6.894760862855001,
553
+ "learning_rate": 9.460473013452401e-06,
554
+ "loss": 0.8345,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 6.001848571839919,
560
+ "learning_rate": 9.488135456452207e-06,
561
+ "loss": 0.6839,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 5.709147411501981,
567
+ "learning_rate": 9.515449934959717e-06,
568
+ "loss": 0.6567,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 4.128977158730638,
574
+ "learning_rate": 9.542425094393249e-06,
575
+ "loss": 0.545,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 2.604915806147427,
581
+ "learning_rate": 9.569069261918582e-06,
582
+ "loss": 0.4596,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 2.039939253407506,
588
+ "learning_rate": 9.59539046188037e-06,
589
+ "loss": 0.452,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 2.0398988141415337,
595
+ "learning_rate": 9.621396430309407e-06,
596
+ "loss": 0.4538,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 2.37589477950211,
602
+ "learning_rate": 9.647094628571464e-06,
603
+ "loss": 0.4505,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 2.80580920047501,
609
+ "learning_rate": 9.672492256217837e-06,
610
+ "loss": 0.5284,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 2.3687428819051197,
616
+ "learning_rate": 9.697596263093091e-06,
617
+ "loss": 0.4371,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 1.6362502854757155,
623
+ "learning_rate": 9.722413360750844e-06,
624
+ "loss": 0.3652,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 1.5360860168740427,
630
+ "learning_rate": 9.746950033224562e-06,
631
+ "loss": 0.3235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 1.7245475092642693,
637
+ "learning_rate": 9.771212547196623e-06,
638
+ "loss": 0.3072,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 1.4493496982196852,
644
+ "learning_rate": 9.795206961605467e-06,
645
+ "loss": 0.2474,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 1.1662262130552072,
651
+ "learning_rate": 9.818939136727777e-06,
652
+ "loss": 0.2684,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 1.1727132215390659,
658
+ "learning_rate": 9.842414742769675e-06,
659
+ "loss": 0.3456,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.8435059300379855,
665
+ "learning_rate": 9.865639267998493e-06,
666
+ "loss": 0.227,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.8593375804730568,
672
+ "learning_rate": 9.888618026444238e-06,
673
+ "loss": 0.1985,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 1.0673772841412472,
679
+ "learning_rate": 9.911356165197841e-06,
680
+ "loss": 0.3195,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.9341285801648793,
686
+ "learning_rate": 9.933858671331224e-06,
687
+ "loss": 0.213,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.7197728549764331,
693
+ "learning_rate": 9.956130378462474e-06,
694
+ "loss": 0.2067,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.5655901060353195,
700
+ "learning_rate": 9.978175972987748e-06,
701
+ "loss": 0.1708,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.4681745812066334,
707
+ "learning_rate": 9.999999999999999e-06,
708
+ "loss": 0.1983,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.4488180280567293,
714
+ "learning_rate": 1e-05,
715
+ "loss": 0.1401,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.43194512376224187,
721
+ "learning_rate": 1e-05,
722
+ "loss": 0.1097,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.3754480982834532,
728
+ "learning_rate": 1e-05,
729
+ "loss": 0.1531,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.34151633602448267,
735
+ "learning_rate": 1e-05,
736
+ "loss": 0.1685,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.26356638458244175,
742
+ "learning_rate": 1e-05,
743
+ "loss": 0.1104,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.27641004897246113,
749
+ "learning_rate": 1e-05,
750
+ "loss": 0.1589,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.1639383504796773,
756
+ "learning_rate": 1e-05,
757
+ "loss": 0.1064,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.24233145434818837,
763
+ "learning_rate": 1e-05,
764
+ "loss": 0.1385,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.16015184210317215,
770
+ "learning_rate": 1e-05,
771
+ "loss": 0.121,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.14931644417242712,
777
+ "learning_rate": 1e-05,
778
+ "loss": 0.1117,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.15078311335939154,
784
+ "learning_rate": 1e-05,
785
+ "loss": 0.1034,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.16714082761639734,
791
+ "learning_rate": 1e-05,
792
+ "loss": 0.115,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.12479711996187942,
798
+ "learning_rate": 1e-05,
799
+ "loss": 0.1029,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.14783351137940065,
805
+ "learning_rate": 1e-05,
806
+ "loss": 0.0987,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.11311876630863582,
812
+ "learning_rate": 1e-05,
813
+ "loss": 0.0911,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.1238329581090649,
819
+ "learning_rate": 1e-05,
820
+ "loss": 0.1095,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.11117413394533605,
826
+ "learning_rate": 1e-05,
827
+ "loss": 0.0968,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.09247708923706752,
833
+ "learning_rate": 1e-05,
834
+ "loss": 0.0985,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.12028574166046906,
840
+ "learning_rate": 1e-05,
841
+ "loss": 0.1085,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.075460717991084,
847
+ "learning_rate": 1e-05,
848
+ "loss": 0.1007,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.1930335796969662,
854
+ "learning_rate": 1e-05,
855
+ "loss": 0.1438,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.11451251015868702,
861
+ "learning_rate": 1e-05,
862
+ "loss": 0.1365,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.09360332240252384,
868
+ "learning_rate": 1e-05,
869
+ "loss": 0.1039,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.13162505626586696,
875
+ "learning_rate": 1e-05,
876
+ "loss": 0.1132,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.1329223725298499,
882
+ "learning_rate": 1e-05,
883
+ "loss": 0.1153,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.09522360247894453,
889
+ "learning_rate": 1e-05,
890
+ "loss": 0.1264,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.12467359977458509,
896
+ "learning_rate": 1e-05,
897
+ "loss": 0.0866,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.08853379791954709,
903
+ "learning_rate": 1e-05,
904
+ "loss": 0.107,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.16050358070185106,
910
+ "learning_rate": 1e-05,
911
+ "loss": 0.1134,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.10331318962336627,
917
+ "learning_rate": 1e-05,
918
+ "loss": 0.1217,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.08498886624952962,
924
+ "learning_rate": 1e-05,
925
+ "loss": 0.12,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.09918910544874306,
931
+ "learning_rate": 1e-05,
932
+ "loss": 0.1173,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.0751198135696547,
938
+ "learning_rate": 1e-05,
939
+ "loss": 0.0973,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.07959218402066412,
945
+ "learning_rate": 1e-05,
946
+ "loss": 0.0992,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.14419628324779726,
952
+ "learning_rate": 1e-05,
953
+ "loss": 0.0856,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.07894542967774888,
959
+ "learning_rate": 1e-05,
960
+ "loss": 0.1193,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.08735606763938318,
966
+ "learning_rate": 1e-05,
967
+ "loss": 0.1061,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.12344637986728384,
973
+ "learning_rate": 1e-05,
974
+ "loss": 0.1184,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.07797745242316644,
980
+ "learning_rate": 1e-05,
981
+ "loss": 0.0959,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.10065236259356937,
987
+ "learning_rate": 1e-05,
988
+ "loss": 0.0957,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.06472006342138571,
994
+ "learning_rate": 1e-05,
995
+ "loss": 0.0721,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.08080002696086562,
1001
+ "learning_rate": 1e-05,
1002
+ "loss": 0.1073,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.10400160039217118,
1008
+ "learning_rate": 1e-05,
1009
+ "loss": 0.1227,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.08719509476650818,
1015
+ "learning_rate": 1e-05,
1016
+ "loss": 0.114,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.08431635436674337,
1022
+ "learning_rate": 1e-05,
1023
+ "loss": 0.1303,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.23947926607305503,
1029
+ "learning_rate": 1e-05,
1030
+ "loss": 0.1199,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.08794721265212341,
1036
+ "learning_rate": 1e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.08063747277184712,
1043
+ "learning_rate": 1e-05,
1044
+ "loss": 0.1062,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.06832693897193236,
1050
+ "learning_rate": 1e-05,
1051
+ "loss": 0.0842,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.07037053759395089,
1057
+ "learning_rate": 1e-05,
1058
+ "loss": 0.0971,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.08753063334098339,
1064
+ "learning_rate": 1e-05,
1065
+ "loss": 0.085,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.11381804369240754,
1071
+ "learning_rate": 1e-05,
1072
+ "loss": 0.1156,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.07203805377255211,
1078
+ "learning_rate": 1e-05,
1079
+ "loss": 0.0951,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.1156784206459358,
1085
+ "learning_rate": 1e-05,
1086
+ "loss": 0.1557,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.11353874538174968,
1092
+ "learning_rate": 1e-05,
1093
+ "loss": 0.1284,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.06675505890811795,
1099
+ "learning_rate": 1e-05,
1100
+ "loss": 0.089,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.07642955477275162,
1106
+ "learning_rate": 1e-05,
1107
+ "loss": 0.0825,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.07196529265355209,
1113
+ "learning_rate": 1e-05,
1114
+ "loss": 0.0885,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.08651497112727735,
1120
+ "learning_rate": 1e-05,
1121
+ "loss": 0.0934,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.07249320769144564,
1127
+ "learning_rate": 1e-05,
1128
+ "loss": 0.102,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 0.08744246078973236,
1134
+ "learning_rate": 1e-05,
1135
+ "loss": 0.0905,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 0.08657071789403122,
1141
+ "learning_rate": 1e-05,
1142
+ "loss": 0.1217,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 0.1064187506686306,
1148
+ "learning_rate": 1e-05,
1149
+ "loss": 0.1163,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 0.1280290421664948,
1155
+ "learning_rate": 1e-05,
1156
+ "loss": 0.1046,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 0.09937311183437203,
1162
+ "learning_rate": 1e-05,
1163
+ "loss": 0.1147,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 0.08384493963149035,
1169
+ "learning_rate": 1e-05,
1170
+ "loss": 0.0837,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.0878469941667546,
1176
+ "learning_rate": 1e-05,
1177
+ "loss": 0.1034,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.08507656582015763,
1183
+ "learning_rate": 1e-05,
1184
+ "loss": 0.1124,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.14341789007671765,
1190
+ "learning_rate": 1e-05,
1191
+ "loss": 0.1045,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.11549200338103699,
1197
+ "learning_rate": 1e-05,
1198
+ "loss": 0.1192,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 0.08297398102159202,
1204
+ "learning_rate": 1e-05,
1205
+ "loss": 0.106,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.08511454300188333,
1211
+ "learning_rate": 1e-05,
1212
+ "loss": 0.1115,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 0.06731733651614974,
1218
+ "learning_rate": 1e-05,
1219
+ "loss": 0.0579,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.08522628039447024,
1225
+ "learning_rate": 1e-05,
1226
+ "loss": 0.0944,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.08148851689521808,
1232
+ "learning_rate": 1e-05,
1233
+ "loss": 0.0946,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.09314761246496046,
1239
+ "learning_rate": 1e-05,
1240
+ "loss": 0.1077,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.08337943532869242,
1246
+ "learning_rate": 1e-05,
1247
+ "loss": 0.0919,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.07936632915317685,
1253
+ "learning_rate": 1e-05,
1254
+ "loss": 0.0878,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.10041567827499392,
1260
+ "learning_rate": 1e-05,
1261
+ "loss": 0.1164,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.08184099557308296,
1267
+ "learning_rate": 1e-05,
1268
+ "loss": 0.1143,
1269
+ "step": 180
1270
+ }
1271
+ ],
1272
+ "logging_steps": 1,
1273
+ "max_steps": 301,
1274
+ "num_input_tokens_seen": 0,
1275
+ "num_train_epochs": 3,
1276
+ "save_steps": 20,
1277
+ "stateful_callbacks": {
1278
+ "TrainerControl": {
1279
+ "args": {
1280
+ "should_epoch_stop": false,
1281
+ "should_evaluate": false,
1282
+ "should_log": false,
1283
+ "should_save": true,
1284
+ "should_training_stop": false
1285
+ },
1286
+ "attributes": {}
1287
+ }
1288
+ },
1289
+ "total_flos": 2.564902203714175e+18,
1290
+ "train_batch_size": 16,
1291
+ "trial_name": null,
1292
+ "trial_params": null
1293
+ }
checkpoint-180/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9430fb289d52200b279530dc31f818fe016b81f2a2feb4d356e75541590998de
3
+ size 6840
checkpoint-20/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-20/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-20/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5b3a1c4ad0ae63bbc0ebb2c7da1061118db60c579b0a42779982fc824a136e9
3
+ size 1138856856
checkpoint-20/trainer_state.json ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.17066666666666666,
5
+ "eval_steps": 500,
6
+ "global_step": 20,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 160.11701043689894,
14
+ "learning_rate": 0.0,
15
+ "loss": 32.4968,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 157.24779534424323,
21
+ "learning_rate": 1.5051499783199057e-06,
22
+ "loss": 31.6979,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 157.9465272449825,
28
+ "learning_rate": 2.385606273598312e-06,
29
+ "loss": 31.8828,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 160.2154859965946,
35
+ "learning_rate": 3.0102999566398115e-06,
36
+ "loss": 31.9681,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 158.5305446712084,
42
+ "learning_rate": 3.4948500216800934e-06,
43
+ "loss": 31.3717,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 155.50243039700376,
49
+ "learning_rate": 3.890756251918218e-06,
50
+ "loss": 30.5348,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 168.6887446693614,
56
+ "learning_rate": 4.225490200071284e-06,
57
+ "loss": 31.3845,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 164.2631689450651,
63
+ "learning_rate": 4.515449934959717e-06,
64
+ "loss": 30.5243,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 174.1878139573776,
70
+ "learning_rate": 4.771212547196624e-06,
71
+ "loss": 30.0138,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 177.9519334680014,
77
+ "learning_rate": 4.9999999999999996e-06,
78
+ "loss": 29.6143,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 183.57104380865735,
84
+ "learning_rate": 5.206963425791125e-06,
85
+ "loss": 28.8718,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 186.4090344511231,
91
+ "learning_rate": 5.395906230238124e-06,
92
+ "loss": 26.1695,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 198.17161320746723,
98
+ "learning_rate": 5.5697167615341825e-06,
99
+ "loss": 26.1266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 182.4443087115901,
105
+ "learning_rate": 5.730640178391189e-06,
106
+ "loss": 24.2121,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 159.38105380659272,
112
+ "learning_rate": 5.880456295278406e-06,
113
+ "loss": 22.5796,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 142.82387126501297,
119
+ "learning_rate": 6.020599913279623e-06,
120
+ "loss": 21.1346,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 123.86394296641578,
126
+ "learning_rate": 6.15224460689137e-06,
127
+ "loss": 19.8457,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 112.3988260336824,
133
+ "learning_rate": 6.276362525516529e-06,
134
+ "loss": 18.7824,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 120.96712330991012,
140
+ "learning_rate": 6.393768004764144e-06,
141
+ "loss": 18.0207,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 129.42692949353702,
147
+ "learning_rate": 6.505149978319905e-06,
148
+ "loss": 16.8355,
149
+ "step": 20
150
+ }
151
+ ],
152
+ "logging_steps": 1,
153
+ "max_steps": 301,
154
+ "num_input_tokens_seen": 0,
155
+ "num_train_epochs": 3,
156
+ "save_steps": 20,
157
+ "stateful_callbacks": {
158
+ "TrainerControl": {
159
+ "args": {
160
+ "should_epoch_stop": false,
161
+ "should_evaluate": false,
162
+ "should_log": false,
163
+ "should_save": true,
164
+ "should_training_stop": false
165
+ },
166
+ "attributes": {}
167
+ }
168
+ },
169
+ "total_flos": 2.924957640079442e+17,
170
+ "train_batch_size": 16,
171
+ "trial_name": null,
172
+ "trial_params": null
173
+ }
checkpoint-20/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9430fb289d52200b279530dc31f818fe016b81f2a2feb4d356e75541590998de
3
+ size 6840
checkpoint-200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ce5931532d5731554dcb8065c2d99f3c334e5df3d5c09e2d9b756585177463a
3
+ size 1138856856
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.7066666666666666,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 160.11701043689894,
14
+ "learning_rate": 0.0,
15
+ "loss": 32.4968,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 157.24779534424323,
21
+ "learning_rate": 1.5051499783199057e-06,
22
+ "loss": 31.6979,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 157.9465272449825,
28
+ "learning_rate": 2.385606273598312e-06,
29
+ "loss": 31.8828,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 160.2154859965946,
35
+ "learning_rate": 3.0102999566398115e-06,
36
+ "loss": 31.9681,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 158.5305446712084,
42
+ "learning_rate": 3.4948500216800934e-06,
43
+ "loss": 31.3717,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 155.50243039700376,
49
+ "learning_rate": 3.890756251918218e-06,
50
+ "loss": 30.5348,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 168.6887446693614,
56
+ "learning_rate": 4.225490200071284e-06,
57
+ "loss": 31.3845,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 164.2631689450651,
63
+ "learning_rate": 4.515449934959717e-06,
64
+ "loss": 30.5243,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 174.1878139573776,
70
+ "learning_rate": 4.771212547196624e-06,
71
+ "loss": 30.0138,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 177.9519334680014,
77
+ "learning_rate": 4.9999999999999996e-06,
78
+ "loss": 29.6143,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 183.57104380865735,
84
+ "learning_rate": 5.206963425791125e-06,
85
+ "loss": 28.8718,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 186.4090344511231,
91
+ "learning_rate": 5.395906230238124e-06,
92
+ "loss": 26.1695,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 198.17161320746723,
98
+ "learning_rate": 5.5697167615341825e-06,
99
+ "loss": 26.1266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 182.4443087115901,
105
+ "learning_rate": 5.730640178391189e-06,
106
+ "loss": 24.2121,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 159.38105380659272,
112
+ "learning_rate": 5.880456295278406e-06,
113
+ "loss": 22.5796,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 142.82387126501297,
119
+ "learning_rate": 6.020599913279623e-06,
120
+ "loss": 21.1346,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 123.86394296641578,
126
+ "learning_rate": 6.15224460689137e-06,
127
+ "loss": 19.8457,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 112.3988260336824,
133
+ "learning_rate": 6.276362525516529e-06,
134
+ "loss": 18.7824,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 120.96712330991012,
140
+ "learning_rate": 6.393768004764144e-06,
141
+ "loss": 18.0207,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 129.42692949353702,
147
+ "learning_rate": 6.505149978319905e-06,
148
+ "loss": 16.8355,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 120.65595457746791,
154
+ "learning_rate": 6.611096473669596e-06,
155
+ "loss": 15.252,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 133.05280466087515,
161
+ "learning_rate": 6.712113404111031e-06,
162
+ "loss": 14.1391,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 127.95029628849048,
168
+ "learning_rate": 6.808639180087963e-06,
169
+ "loss": 12.9566,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 108.83495245094748,
175
+ "learning_rate": 6.90105620855803e-06,
176
+ "loss": 11.8743,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 99.90727146021455,
182
+ "learning_rate": 6.989700043360187e-06,
183
+ "loss": 10.962,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 98.37126740059823,
189
+ "learning_rate": 7.074866739854089e-06,
190
+ "loss": 9.9919,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 92.26708429201608,
196
+ "learning_rate": 7.156818820794936e-06,
197
+ "loss": 8.8811,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 83.36099898839835,
203
+ "learning_rate": 7.235790156711096e-06,
204
+ "loss": 7.7806,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 68.07500315598597,
210
+ "learning_rate": 7.3119899894947795e-06,
211
+ "loss": 7.0528,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 69.58960332280246,
217
+ "learning_rate": 7.385606273598311e-06,
218
+ "loss": 6.3683,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 68.77532204123075,
224
+ "learning_rate": 7.456808469171363e-06,
225
+ "loss": 6.1635,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 66.29676636510072,
231
+ "learning_rate": 7.5257498915995295e-06,
232
+ "loss": 4.711,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 42.87145091679237,
238
+ "learning_rate": 7.592569699389437e-06,
239
+ "loss": 4.5119,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 26.2592350291551,
245
+ "learning_rate": 7.657394585211274e-06,
246
+ "loss": 4.31,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 15.35959008067237,
252
+ "learning_rate": 7.720340221751376e-06,
253
+ "loss": 4.0001,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.50847651865227,
259
+ "learning_rate": 7.781512503836437e-06,
260
+ "loss": 3.5723,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 6.562581089063746,
266
+ "learning_rate": 7.841008620334974e-06,
267
+ "loss": 3.9254,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 5.6145595722250095,
273
+ "learning_rate": 7.89891798308405e-06,
274
+ "loss": 3.8746,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 5.385367220486204,
280
+ "learning_rate": 7.955323035132495e-06,
281
+ "loss": 3.8128,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 5.403447124703616,
287
+ "learning_rate": 8.010299956639811e-06,
288
+ "loss": 3.885,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 5.48242204895128,
294
+ "learning_rate": 8.063919283598677e-06,
295
+ "loss": 3.8048,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 5.5525098950513865,
301
+ "learning_rate": 8.116246451989503e-06,
302
+ "loss": 3.7508,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 5.354384520535484,
308
+ "learning_rate": 8.167342277897933e-06,
309
+ "loss": 3.5069,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 5.46272338131107,
315
+ "learning_rate": 8.217263382430936e-06,
316
+ "loss": 3.6747,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 4.798550688968453,
322
+ "learning_rate": 8.266062568876717e-06,
323
+ "loss": 3.1609,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 5.755104452953421,
329
+ "learning_rate": 8.31378915840787e-06,
330
+ "loss": 3.5733,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 4.618763611067563,
336
+ "learning_rate": 8.360489289678585e-06,
337
+ "loss": 2.9402,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 5.506785974818791,
343
+ "learning_rate": 8.406206186877936e-06,
344
+ "loss": 3.382,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 4.68603207809794,
350
+ "learning_rate": 8.450980400142568e-06,
351
+ "loss": 2.9918,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 5.124033394817131,
357
+ "learning_rate": 8.494850021680093e-06,
358
+ "loss": 3.3202,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 4.293001183481895,
364
+ "learning_rate": 8.537850880489681e-06,
365
+ "loss": 2.8519,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 4.382596858902394,
371
+ "learning_rate": 8.580016718173996e-06,
372
+ "loss": 2.9683,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 4.3176263388044696,
378
+ "learning_rate": 8.621379348003945e-06,
379
+ "loss": 2.9257,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 4.5250022171605195,
385
+ "learning_rate": 8.661968799114844e-06,
386
+ "loss": 3.0556,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 4.429424190600661,
392
+ "learning_rate": 8.701813447471218e-06,
393
+ "loss": 2.9513,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 4.349652568052827,
399
+ "learning_rate": 8.740940135031001e-06,
400
+ "loss": 2.9029,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 4.299227871435445,
406
+ "learning_rate": 8.779374278362457e-06,
407
+ "loss": 2.5989,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 4.562461330302201,
413
+ "learning_rate": 8.817139967814684e-06,
414
+ "loss": 2.8158,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 4.606987182758338,
420
+ "learning_rate": 8.854260058210721e-06,
421
+ "loss": 2.6272,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 4.9420031522511545,
427
+ "learning_rate": 8.890756251918216e-06,
428
+ "loss": 2.5488,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 4.706462297046012,
434
+ "learning_rate": 8.926649175053834e-06,
435
+ "loss": 2.3575,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 4.862820204363494,
441
+ "learning_rate": 8.961958447491269e-06,
442
+ "loss": 2.2952,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 4.911045913397774,
448
+ "learning_rate": 8.996702747267908e-06,
449
+ "loss": 2.1768,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 5.46978680182973,
455
+ "learning_rate": 9.030899869919434e-06,
456
+ "loss": 2.2528,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 5.847558397227374,
462
+ "learning_rate": 9.064566783214276e-06,
463
+ "loss": 2.2401,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 5.984440656257,
469
+ "learning_rate": 9.097719677709343e-06,
470
+ "loss": 2.156,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 6.146172189799918,
476
+ "learning_rate": 9.130374013504131e-06,
477
+ "loss": 2.0059,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 5.725706778130614,
483
+ "learning_rate": 9.162544563531182e-06,
484
+ "loss": 1.7756,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 6.479060263133115,
490
+ "learning_rate": 9.194245453686277e-06,
491
+ "loss": 1.7651,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 7.319291050667066,
497
+ "learning_rate": 9.225490200071284e-06,
498
+ "loss": 1.7712,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 6.913275412032087,
504
+ "learning_rate": 9.256291743595376e-06,
505
+ "loss": 1.709,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 6.600657239614328,
511
+ "learning_rate": 9.28666248215634e-06,
512
+ "loss": 1.3731,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 7.301483724647945,
518
+ "learning_rate": 9.316614300602277e-06,
519
+ "loss": 1.4166,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 7.154933225265475,
525
+ "learning_rate": 9.346158598654881e-06,
526
+ "loss": 1.2797,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 8.248472592538771,
532
+ "learning_rate": 9.375306316958499e-06,
533
+ "loss": 1.2082,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 7.444479096112177,
539
+ "learning_rate": 9.404067961403957e-06,
540
+ "loss": 1.0402,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 6.819760434594012,
546
+ "learning_rate": 9.432453625862409e-06,
547
+ "loss": 0.8244,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 6.894760862855001,
553
+ "learning_rate": 9.460473013452401e-06,
554
+ "loss": 0.8345,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 6.001848571839919,
560
+ "learning_rate": 9.488135456452207e-06,
561
+ "loss": 0.6839,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 5.709147411501981,
567
+ "learning_rate": 9.515449934959717e-06,
568
+ "loss": 0.6567,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 4.128977158730638,
574
+ "learning_rate": 9.542425094393249e-06,
575
+ "loss": 0.545,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 2.604915806147427,
581
+ "learning_rate": 9.569069261918582e-06,
582
+ "loss": 0.4596,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 2.039939253407506,
588
+ "learning_rate": 9.59539046188037e-06,
589
+ "loss": 0.452,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 2.0398988141415337,
595
+ "learning_rate": 9.621396430309407e-06,
596
+ "loss": 0.4538,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 2.37589477950211,
602
+ "learning_rate": 9.647094628571464e-06,
603
+ "loss": 0.4505,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 2.80580920047501,
609
+ "learning_rate": 9.672492256217837e-06,
610
+ "loss": 0.5284,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 2.3687428819051197,
616
+ "learning_rate": 9.697596263093091e-06,
617
+ "loss": 0.4371,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 1.6362502854757155,
623
+ "learning_rate": 9.722413360750844e-06,
624
+ "loss": 0.3652,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 1.5360860168740427,
630
+ "learning_rate": 9.746950033224562e-06,
631
+ "loss": 0.3235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 1.7245475092642693,
637
+ "learning_rate": 9.771212547196623e-06,
638
+ "loss": 0.3072,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 1.4493496982196852,
644
+ "learning_rate": 9.795206961605467e-06,
645
+ "loss": 0.2474,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 1.1662262130552072,
651
+ "learning_rate": 9.818939136727777e-06,
652
+ "loss": 0.2684,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 1.1727132215390659,
658
+ "learning_rate": 9.842414742769675e-06,
659
+ "loss": 0.3456,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.8435059300379855,
665
+ "learning_rate": 9.865639267998493e-06,
666
+ "loss": 0.227,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.8593375804730568,
672
+ "learning_rate": 9.888618026444238e-06,
673
+ "loss": 0.1985,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 1.0673772841412472,
679
+ "learning_rate": 9.911356165197841e-06,
680
+ "loss": 0.3195,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.9341285801648793,
686
+ "learning_rate": 9.933858671331224e-06,
687
+ "loss": 0.213,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.7197728549764331,
693
+ "learning_rate": 9.956130378462474e-06,
694
+ "loss": 0.2067,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.5655901060353195,
700
+ "learning_rate": 9.978175972987748e-06,
701
+ "loss": 0.1708,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.4681745812066334,
707
+ "learning_rate": 9.999999999999999e-06,
708
+ "loss": 0.1983,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.4488180280567293,
714
+ "learning_rate": 1e-05,
715
+ "loss": 0.1401,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.43194512376224187,
721
+ "learning_rate": 1e-05,
722
+ "loss": 0.1097,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.3754480982834532,
728
+ "learning_rate": 1e-05,
729
+ "loss": 0.1531,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.34151633602448267,
735
+ "learning_rate": 1e-05,
736
+ "loss": 0.1685,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.26356638458244175,
742
+ "learning_rate": 1e-05,
743
+ "loss": 0.1104,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.27641004897246113,
749
+ "learning_rate": 1e-05,
750
+ "loss": 0.1589,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.1639383504796773,
756
+ "learning_rate": 1e-05,
757
+ "loss": 0.1064,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.24233145434818837,
763
+ "learning_rate": 1e-05,
764
+ "loss": 0.1385,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.16015184210317215,
770
+ "learning_rate": 1e-05,
771
+ "loss": 0.121,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.14931644417242712,
777
+ "learning_rate": 1e-05,
778
+ "loss": 0.1117,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.15078311335939154,
784
+ "learning_rate": 1e-05,
785
+ "loss": 0.1034,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.16714082761639734,
791
+ "learning_rate": 1e-05,
792
+ "loss": 0.115,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.12479711996187942,
798
+ "learning_rate": 1e-05,
799
+ "loss": 0.1029,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.14783351137940065,
805
+ "learning_rate": 1e-05,
806
+ "loss": 0.0987,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.11311876630863582,
812
+ "learning_rate": 1e-05,
813
+ "loss": 0.0911,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.1238329581090649,
819
+ "learning_rate": 1e-05,
820
+ "loss": 0.1095,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.11117413394533605,
826
+ "learning_rate": 1e-05,
827
+ "loss": 0.0968,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.09247708923706752,
833
+ "learning_rate": 1e-05,
834
+ "loss": 0.0985,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.12028574166046906,
840
+ "learning_rate": 1e-05,
841
+ "loss": 0.1085,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.075460717991084,
847
+ "learning_rate": 1e-05,
848
+ "loss": 0.1007,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.1930335796969662,
854
+ "learning_rate": 1e-05,
855
+ "loss": 0.1438,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.11451251015868702,
861
+ "learning_rate": 1e-05,
862
+ "loss": 0.1365,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.09360332240252384,
868
+ "learning_rate": 1e-05,
869
+ "loss": 0.1039,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.13162505626586696,
875
+ "learning_rate": 1e-05,
876
+ "loss": 0.1132,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.1329223725298499,
882
+ "learning_rate": 1e-05,
883
+ "loss": 0.1153,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.09522360247894453,
889
+ "learning_rate": 1e-05,
890
+ "loss": 0.1264,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.12467359977458509,
896
+ "learning_rate": 1e-05,
897
+ "loss": 0.0866,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.08853379791954709,
903
+ "learning_rate": 1e-05,
904
+ "loss": 0.107,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.16050358070185106,
910
+ "learning_rate": 1e-05,
911
+ "loss": 0.1134,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.10331318962336627,
917
+ "learning_rate": 1e-05,
918
+ "loss": 0.1217,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.08498886624952962,
924
+ "learning_rate": 1e-05,
925
+ "loss": 0.12,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.09918910544874306,
931
+ "learning_rate": 1e-05,
932
+ "loss": 0.1173,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.0751198135696547,
938
+ "learning_rate": 1e-05,
939
+ "loss": 0.0973,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.07959218402066412,
945
+ "learning_rate": 1e-05,
946
+ "loss": 0.0992,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.14419628324779726,
952
+ "learning_rate": 1e-05,
953
+ "loss": 0.0856,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.07894542967774888,
959
+ "learning_rate": 1e-05,
960
+ "loss": 0.1193,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.08735606763938318,
966
+ "learning_rate": 1e-05,
967
+ "loss": 0.1061,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.12344637986728384,
973
+ "learning_rate": 1e-05,
974
+ "loss": 0.1184,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.07797745242316644,
980
+ "learning_rate": 1e-05,
981
+ "loss": 0.0959,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.10065236259356937,
987
+ "learning_rate": 1e-05,
988
+ "loss": 0.0957,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.06472006342138571,
994
+ "learning_rate": 1e-05,
995
+ "loss": 0.0721,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.08080002696086562,
1001
+ "learning_rate": 1e-05,
1002
+ "loss": 0.1073,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.10400160039217118,
1008
+ "learning_rate": 1e-05,
1009
+ "loss": 0.1227,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.08719509476650818,
1015
+ "learning_rate": 1e-05,
1016
+ "loss": 0.114,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.08431635436674337,
1022
+ "learning_rate": 1e-05,
1023
+ "loss": 0.1303,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.23947926607305503,
1029
+ "learning_rate": 1e-05,
1030
+ "loss": 0.1199,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.08794721265212341,
1036
+ "learning_rate": 1e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.08063747277184712,
1043
+ "learning_rate": 1e-05,
1044
+ "loss": 0.1062,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.06832693897193236,
1050
+ "learning_rate": 1e-05,
1051
+ "loss": 0.0842,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.07037053759395089,
1057
+ "learning_rate": 1e-05,
1058
+ "loss": 0.0971,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.08753063334098339,
1064
+ "learning_rate": 1e-05,
1065
+ "loss": 0.085,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.11381804369240754,
1071
+ "learning_rate": 1e-05,
1072
+ "loss": 0.1156,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.07203805377255211,
1078
+ "learning_rate": 1e-05,
1079
+ "loss": 0.0951,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.1156784206459358,
1085
+ "learning_rate": 1e-05,
1086
+ "loss": 0.1557,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.11353874538174968,
1092
+ "learning_rate": 1e-05,
1093
+ "loss": 0.1284,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.06675505890811795,
1099
+ "learning_rate": 1e-05,
1100
+ "loss": 0.089,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.07642955477275162,
1106
+ "learning_rate": 1e-05,
1107
+ "loss": 0.0825,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.07196529265355209,
1113
+ "learning_rate": 1e-05,
1114
+ "loss": 0.0885,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.08651497112727735,
1120
+ "learning_rate": 1e-05,
1121
+ "loss": 0.0934,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.07249320769144564,
1127
+ "learning_rate": 1e-05,
1128
+ "loss": 0.102,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 0.08744246078973236,
1134
+ "learning_rate": 1e-05,
1135
+ "loss": 0.0905,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 0.08657071789403122,
1141
+ "learning_rate": 1e-05,
1142
+ "loss": 0.1217,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 0.1064187506686306,
1148
+ "learning_rate": 1e-05,
1149
+ "loss": 0.1163,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 0.1280290421664948,
1155
+ "learning_rate": 1e-05,
1156
+ "loss": 0.1046,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 0.09937311183437203,
1162
+ "learning_rate": 1e-05,
1163
+ "loss": 0.1147,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 0.08384493963149035,
1169
+ "learning_rate": 1e-05,
1170
+ "loss": 0.0837,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.0878469941667546,
1176
+ "learning_rate": 1e-05,
1177
+ "loss": 0.1034,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.08507656582015763,
1183
+ "learning_rate": 1e-05,
1184
+ "loss": 0.1124,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.14341789007671765,
1190
+ "learning_rate": 1e-05,
1191
+ "loss": 0.1045,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.11549200338103699,
1197
+ "learning_rate": 1e-05,
1198
+ "loss": 0.1192,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 0.08297398102159202,
1204
+ "learning_rate": 1e-05,
1205
+ "loss": 0.106,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.08511454300188333,
1211
+ "learning_rate": 1e-05,
1212
+ "loss": 0.1115,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 0.06731733651614974,
1218
+ "learning_rate": 1e-05,
1219
+ "loss": 0.0579,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.08522628039447024,
1225
+ "learning_rate": 1e-05,
1226
+ "loss": 0.0944,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.08148851689521808,
1232
+ "learning_rate": 1e-05,
1233
+ "loss": 0.0946,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.09314761246496046,
1239
+ "learning_rate": 1e-05,
1240
+ "loss": 0.1077,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.08337943532869242,
1246
+ "learning_rate": 1e-05,
1247
+ "loss": 0.0919,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.07936632915317685,
1253
+ "learning_rate": 1e-05,
1254
+ "loss": 0.0878,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.10041567827499392,
1260
+ "learning_rate": 1e-05,
1261
+ "loss": 0.1164,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.08184099557308296,
1267
+ "learning_rate": 1e-05,
1268
+ "loss": 0.1143,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.5445333333333333,
1273
+ "grad_norm": 0.08722428613554693,
1274
+ "learning_rate": 1e-05,
1275
+ "loss": 0.1068,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5530666666666666,
1280
+ "grad_norm": 0.08710953879234071,
1281
+ "learning_rate": 1e-05,
1282
+ "loss": 0.11,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.5615999999999999,
1287
+ "grad_norm": 0.08115450331732889,
1288
+ "learning_rate": 1e-05,
1289
+ "loss": 0.0877,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5701333333333334,
1294
+ "grad_norm": 0.06955623887568685,
1295
+ "learning_rate": 1e-05,
1296
+ "loss": 0.0758,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5786666666666667,
1301
+ "grad_norm": 0.11077420984396173,
1302
+ "learning_rate": 1e-05,
1303
+ "loss": 0.0886,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5872000000000002,
1308
+ "grad_norm": 0.09248170156976404,
1309
+ "learning_rate": 1e-05,
1310
+ "loss": 0.1042,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5957333333333334,
1315
+ "grad_norm": 0.0875865630501027,
1316
+ "learning_rate": 1e-05,
1317
+ "loss": 0.0956,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.6042666666666667,
1322
+ "grad_norm": 0.09025094284776364,
1323
+ "learning_rate": 1e-05,
1324
+ "loss": 0.0865,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6128,
1329
+ "grad_norm": 0.09201435441623142,
1330
+ "learning_rate": 1e-05,
1331
+ "loss": 0.0848,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.6213333333333333,
1336
+ "grad_norm": 0.08582347653077456,
1337
+ "learning_rate": 1e-05,
1338
+ "loss": 0.0868,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6298666666666666,
1343
+ "grad_norm": 0.08390294885002035,
1344
+ "learning_rate": 1e-05,
1345
+ "loss": 0.0883,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.6383999999999999,
1350
+ "grad_norm": 0.09484831369314428,
1351
+ "learning_rate": 1e-05,
1352
+ "loss": 0.0955,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6469333333333334,
1357
+ "grad_norm": 0.08291745035821121,
1358
+ "learning_rate": 1e-05,
1359
+ "loss": 0.0943,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.6554666666666666,
1364
+ "grad_norm": 0.09788087284042751,
1365
+ "learning_rate": 1e-05,
1366
+ "loss": 0.1146,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6640000000000001,
1371
+ "grad_norm": 0.09763113175653552,
1372
+ "learning_rate": 1e-05,
1373
+ "loss": 0.1028,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6725333333333334,
1378
+ "grad_norm": 0.11617852408102547,
1379
+ "learning_rate": 1e-05,
1380
+ "loss": 0.1323,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6810666666666667,
1385
+ "grad_norm": 0.12191871384850739,
1386
+ "learning_rate": 1e-05,
1387
+ "loss": 0.1395,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6896,
1392
+ "grad_norm": 0.1359943408077879,
1393
+ "learning_rate": 1e-05,
1394
+ "loss": 0.1191,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.6981333333333333,
1399
+ "grad_norm": 0.12006029084078058,
1400
+ "learning_rate": 1e-05,
1401
+ "loss": 0.0983,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7066666666666666,
1406
+ "grad_norm": 0.09668785600159001,
1407
+ "learning_rate": 1e-05,
1408
+ "loss": 0.0801,
1409
+ "step": 200
1410
+ }
1411
+ ],
1412
+ "logging_steps": 1,
1413
+ "max_steps": 301,
1414
+ "num_input_tokens_seen": 0,
1415
+ "num_train_epochs": 3,
1416
+ "save_steps": 20,
1417
+ "stateful_callbacks": {
1418
+ "TrainerControl": {
1419
+ "args": {
1420
+ "should_epoch_stop": false,
1421
+ "should_evaluate": false,
1422
+ "should_log": false,
1423
+ "should_save": true,
1424
+ "should_training_stop": false
1425
+ },
1426
+ "attributes": {}
1427
+ }
1428
+ },
1429
+ "total_flos": 2.856102926634451e+18,
1430
+ "train_batch_size": 16,
1431
+ "trial_name": null,
1432
+ "trial_params": null
1433
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9430fb289d52200b279530dc31f818fe016b81f2a2feb4d356e75541590998de
3
+ size 6840
checkpoint-220/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-220/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-220/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ec77bfb6c769698443828a3062a3136b9ef241b243ec055816d10323a79be14
3
+ size 1138856856
checkpoint-220/trainer_state.json ADDED
@@ -0,0 +1,1573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.8773333333333333,
5
+ "eval_steps": 500,
6
+ "global_step": 220,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 160.11701043689894,
14
+ "learning_rate": 0.0,
15
+ "loss": 32.4968,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 157.24779534424323,
21
+ "learning_rate": 1.5051499783199057e-06,
22
+ "loss": 31.6979,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 157.9465272449825,
28
+ "learning_rate": 2.385606273598312e-06,
29
+ "loss": 31.8828,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 160.2154859965946,
35
+ "learning_rate": 3.0102999566398115e-06,
36
+ "loss": 31.9681,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 158.5305446712084,
42
+ "learning_rate": 3.4948500216800934e-06,
43
+ "loss": 31.3717,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 155.50243039700376,
49
+ "learning_rate": 3.890756251918218e-06,
50
+ "loss": 30.5348,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 168.6887446693614,
56
+ "learning_rate": 4.225490200071284e-06,
57
+ "loss": 31.3845,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 164.2631689450651,
63
+ "learning_rate": 4.515449934959717e-06,
64
+ "loss": 30.5243,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 174.1878139573776,
70
+ "learning_rate": 4.771212547196624e-06,
71
+ "loss": 30.0138,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 177.9519334680014,
77
+ "learning_rate": 4.9999999999999996e-06,
78
+ "loss": 29.6143,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 183.57104380865735,
84
+ "learning_rate": 5.206963425791125e-06,
85
+ "loss": 28.8718,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 186.4090344511231,
91
+ "learning_rate": 5.395906230238124e-06,
92
+ "loss": 26.1695,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 198.17161320746723,
98
+ "learning_rate": 5.5697167615341825e-06,
99
+ "loss": 26.1266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 182.4443087115901,
105
+ "learning_rate": 5.730640178391189e-06,
106
+ "loss": 24.2121,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 159.38105380659272,
112
+ "learning_rate": 5.880456295278406e-06,
113
+ "loss": 22.5796,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 142.82387126501297,
119
+ "learning_rate": 6.020599913279623e-06,
120
+ "loss": 21.1346,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 123.86394296641578,
126
+ "learning_rate": 6.15224460689137e-06,
127
+ "loss": 19.8457,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 112.3988260336824,
133
+ "learning_rate": 6.276362525516529e-06,
134
+ "loss": 18.7824,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 120.96712330991012,
140
+ "learning_rate": 6.393768004764144e-06,
141
+ "loss": 18.0207,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 129.42692949353702,
147
+ "learning_rate": 6.505149978319905e-06,
148
+ "loss": 16.8355,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 120.65595457746791,
154
+ "learning_rate": 6.611096473669596e-06,
155
+ "loss": 15.252,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 133.05280466087515,
161
+ "learning_rate": 6.712113404111031e-06,
162
+ "loss": 14.1391,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 127.95029628849048,
168
+ "learning_rate": 6.808639180087963e-06,
169
+ "loss": 12.9566,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 108.83495245094748,
175
+ "learning_rate": 6.90105620855803e-06,
176
+ "loss": 11.8743,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 99.90727146021455,
182
+ "learning_rate": 6.989700043360187e-06,
183
+ "loss": 10.962,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 98.37126740059823,
189
+ "learning_rate": 7.074866739854089e-06,
190
+ "loss": 9.9919,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 92.26708429201608,
196
+ "learning_rate": 7.156818820794936e-06,
197
+ "loss": 8.8811,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 83.36099898839835,
203
+ "learning_rate": 7.235790156711096e-06,
204
+ "loss": 7.7806,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 68.07500315598597,
210
+ "learning_rate": 7.3119899894947795e-06,
211
+ "loss": 7.0528,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 69.58960332280246,
217
+ "learning_rate": 7.385606273598311e-06,
218
+ "loss": 6.3683,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 68.77532204123075,
224
+ "learning_rate": 7.456808469171363e-06,
225
+ "loss": 6.1635,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 66.29676636510072,
231
+ "learning_rate": 7.5257498915995295e-06,
232
+ "loss": 4.711,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 42.87145091679237,
238
+ "learning_rate": 7.592569699389437e-06,
239
+ "loss": 4.5119,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 26.2592350291551,
245
+ "learning_rate": 7.657394585211274e-06,
246
+ "loss": 4.31,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 15.35959008067237,
252
+ "learning_rate": 7.720340221751376e-06,
253
+ "loss": 4.0001,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.50847651865227,
259
+ "learning_rate": 7.781512503836437e-06,
260
+ "loss": 3.5723,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 6.562581089063746,
266
+ "learning_rate": 7.841008620334974e-06,
267
+ "loss": 3.9254,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 5.6145595722250095,
273
+ "learning_rate": 7.89891798308405e-06,
274
+ "loss": 3.8746,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 5.385367220486204,
280
+ "learning_rate": 7.955323035132495e-06,
281
+ "loss": 3.8128,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 5.403447124703616,
287
+ "learning_rate": 8.010299956639811e-06,
288
+ "loss": 3.885,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 5.48242204895128,
294
+ "learning_rate": 8.063919283598677e-06,
295
+ "loss": 3.8048,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 5.5525098950513865,
301
+ "learning_rate": 8.116246451989503e-06,
302
+ "loss": 3.7508,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 5.354384520535484,
308
+ "learning_rate": 8.167342277897933e-06,
309
+ "loss": 3.5069,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 5.46272338131107,
315
+ "learning_rate": 8.217263382430936e-06,
316
+ "loss": 3.6747,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 4.798550688968453,
322
+ "learning_rate": 8.266062568876717e-06,
323
+ "loss": 3.1609,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 5.755104452953421,
329
+ "learning_rate": 8.31378915840787e-06,
330
+ "loss": 3.5733,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 4.618763611067563,
336
+ "learning_rate": 8.360489289678585e-06,
337
+ "loss": 2.9402,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 5.506785974818791,
343
+ "learning_rate": 8.406206186877936e-06,
344
+ "loss": 3.382,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 4.68603207809794,
350
+ "learning_rate": 8.450980400142568e-06,
351
+ "loss": 2.9918,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 5.124033394817131,
357
+ "learning_rate": 8.494850021680093e-06,
358
+ "loss": 3.3202,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 4.293001183481895,
364
+ "learning_rate": 8.537850880489681e-06,
365
+ "loss": 2.8519,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 4.382596858902394,
371
+ "learning_rate": 8.580016718173996e-06,
372
+ "loss": 2.9683,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 4.3176263388044696,
378
+ "learning_rate": 8.621379348003945e-06,
379
+ "loss": 2.9257,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 4.5250022171605195,
385
+ "learning_rate": 8.661968799114844e-06,
386
+ "loss": 3.0556,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 4.429424190600661,
392
+ "learning_rate": 8.701813447471218e-06,
393
+ "loss": 2.9513,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 4.349652568052827,
399
+ "learning_rate": 8.740940135031001e-06,
400
+ "loss": 2.9029,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 4.299227871435445,
406
+ "learning_rate": 8.779374278362457e-06,
407
+ "loss": 2.5989,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 4.562461330302201,
413
+ "learning_rate": 8.817139967814684e-06,
414
+ "loss": 2.8158,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 4.606987182758338,
420
+ "learning_rate": 8.854260058210721e-06,
421
+ "loss": 2.6272,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 4.9420031522511545,
427
+ "learning_rate": 8.890756251918216e-06,
428
+ "loss": 2.5488,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 4.706462297046012,
434
+ "learning_rate": 8.926649175053834e-06,
435
+ "loss": 2.3575,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 4.862820204363494,
441
+ "learning_rate": 8.961958447491269e-06,
442
+ "loss": 2.2952,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 4.911045913397774,
448
+ "learning_rate": 8.996702747267908e-06,
449
+ "loss": 2.1768,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 5.46978680182973,
455
+ "learning_rate": 9.030899869919434e-06,
456
+ "loss": 2.2528,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 5.847558397227374,
462
+ "learning_rate": 9.064566783214276e-06,
463
+ "loss": 2.2401,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 5.984440656257,
469
+ "learning_rate": 9.097719677709343e-06,
470
+ "loss": 2.156,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 6.146172189799918,
476
+ "learning_rate": 9.130374013504131e-06,
477
+ "loss": 2.0059,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 5.725706778130614,
483
+ "learning_rate": 9.162544563531182e-06,
484
+ "loss": 1.7756,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 6.479060263133115,
490
+ "learning_rate": 9.194245453686277e-06,
491
+ "loss": 1.7651,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 7.319291050667066,
497
+ "learning_rate": 9.225490200071284e-06,
498
+ "loss": 1.7712,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 6.913275412032087,
504
+ "learning_rate": 9.256291743595376e-06,
505
+ "loss": 1.709,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 6.600657239614328,
511
+ "learning_rate": 9.28666248215634e-06,
512
+ "loss": 1.3731,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 7.301483724647945,
518
+ "learning_rate": 9.316614300602277e-06,
519
+ "loss": 1.4166,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 7.154933225265475,
525
+ "learning_rate": 9.346158598654881e-06,
526
+ "loss": 1.2797,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 8.248472592538771,
532
+ "learning_rate": 9.375306316958499e-06,
533
+ "loss": 1.2082,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 7.444479096112177,
539
+ "learning_rate": 9.404067961403957e-06,
540
+ "loss": 1.0402,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 6.819760434594012,
546
+ "learning_rate": 9.432453625862409e-06,
547
+ "loss": 0.8244,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 6.894760862855001,
553
+ "learning_rate": 9.460473013452401e-06,
554
+ "loss": 0.8345,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 6.001848571839919,
560
+ "learning_rate": 9.488135456452207e-06,
561
+ "loss": 0.6839,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 5.709147411501981,
567
+ "learning_rate": 9.515449934959717e-06,
568
+ "loss": 0.6567,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 4.128977158730638,
574
+ "learning_rate": 9.542425094393249e-06,
575
+ "loss": 0.545,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 2.604915806147427,
581
+ "learning_rate": 9.569069261918582e-06,
582
+ "loss": 0.4596,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 2.039939253407506,
588
+ "learning_rate": 9.59539046188037e-06,
589
+ "loss": 0.452,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 2.0398988141415337,
595
+ "learning_rate": 9.621396430309407e-06,
596
+ "loss": 0.4538,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 2.37589477950211,
602
+ "learning_rate": 9.647094628571464e-06,
603
+ "loss": 0.4505,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 2.80580920047501,
609
+ "learning_rate": 9.672492256217837e-06,
610
+ "loss": 0.5284,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 2.3687428819051197,
616
+ "learning_rate": 9.697596263093091e-06,
617
+ "loss": 0.4371,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 1.6362502854757155,
623
+ "learning_rate": 9.722413360750844e-06,
624
+ "loss": 0.3652,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 1.5360860168740427,
630
+ "learning_rate": 9.746950033224562e-06,
631
+ "loss": 0.3235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 1.7245475092642693,
637
+ "learning_rate": 9.771212547196623e-06,
638
+ "loss": 0.3072,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 1.4493496982196852,
644
+ "learning_rate": 9.795206961605467e-06,
645
+ "loss": 0.2474,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 1.1662262130552072,
651
+ "learning_rate": 9.818939136727777e-06,
652
+ "loss": 0.2684,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 1.1727132215390659,
658
+ "learning_rate": 9.842414742769675e-06,
659
+ "loss": 0.3456,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.8435059300379855,
665
+ "learning_rate": 9.865639267998493e-06,
666
+ "loss": 0.227,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.8593375804730568,
672
+ "learning_rate": 9.888618026444238e-06,
673
+ "loss": 0.1985,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 1.0673772841412472,
679
+ "learning_rate": 9.911356165197841e-06,
680
+ "loss": 0.3195,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.9341285801648793,
686
+ "learning_rate": 9.933858671331224e-06,
687
+ "loss": 0.213,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.7197728549764331,
693
+ "learning_rate": 9.956130378462474e-06,
694
+ "loss": 0.2067,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.5655901060353195,
700
+ "learning_rate": 9.978175972987748e-06,
701
+ "loss": 0.1708,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.4681745812066334,
707
+ "learning_rate": 9.999999999999999e-06,
708
+ "loss": 0.1983,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.4488180280567293,
714
+ "learning_rate": 1e-05,
715
+ "loss": 0.1401,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.43194512376224187,
721
+ "learning_rate": 1e-05,
722
+ "loss": 0.1097,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.3754480982834532,
728
+ "learning_rate": 1e-05,
729
+ "loss": 0.1531,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.34151633602448267,
735
+ "learning_rate": 1e-05,
736
+ "loss": 0.1685,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.26356638458244175,
742
+ "learning_rate": 1e-05,
743
+ "loss": 0.1104,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.27641004897246113,
749
+ "learning_rate": 1e-05,
750
+ "loss": 0.1589,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.1639383504796773,
756
+ "learning_rate": 1e-05,
757
+ "loss": 0.1064,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.24233145434818837,
763
+ "learning_rate": 1e-05,
764
+ "loss": 0.1385,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.16015184210317215,
770
+ "learning_rate": 1e-05,
771
+ "loss": 0.121,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.14931644417242712,
777
+ "learning_rate": 1e-05,
778
+ "loss": 0.1117,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.15078311335939154,
784
+ "learning_rate": 1e-05,
785
+ "loss": 0.1034,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.16714082761639734,
791
+ "learning_rate": 1e-05,
792
+ "loss": 0.115,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.12479711996187942,
798
+ "learning_rate": 1e-05,
799
+ "loss": 0.1029,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.14783351137940065,
805
+ "learning_rate": 1e-05,
806
+ "loss": 0.0987,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.11311876630863582,
812
+ "learning_rate": 1e-05,
813
+ "loss": 0.0911,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.1238329581090649,
819
+ "learning_rate": 1e-05,
820
+ "loss": 0.1095,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.11117413394533605,
826
+ "learning_rate": 1e-05,
827
+ "loss": 0.0968,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.09247708923706752,
833
+ "learning_rate": 1e-05,
834
+ "loss": 0.0985,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.12028574166046906,
840
+ "learning_rate": 1e-05,
841
+ "loss": 0.1085,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.075460717991084,
847
+ "learning_rate": 1e-05,
848
+ "loss": 0.1007,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.1930335796969662,
854
+ "learning_rate": 1e-05,
855
+ "loss": 0.1438,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.11451251015868702,
861
+ "learning_rate": 1e-05,
862
+ "loss": 0.1365,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.09360332240252384,
868
+ "learning_rate": 1e-05,
869
+ "loss": 0.1039,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.13162505626586696,
875
+ "learning_rate": 1e-05,
876
+ "loss": 0.1132,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.1329223725298499,
882
+ "learning_rate": 1e-05,
883
+ "loss": 0.1153,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.09522360247894453,
889
+ "learning_rate": 1e-05,
890
+ "loss": 0.1264,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.12467359977458509,
896
+ "learning_rate": 1e-05,
897
+ "loss": 0.0866,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.08853379791954709,
903
+ "learning_rate": 1e-05,
904
+ "loss": 0.107,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.16050358070185106,
910
+ "learning_rate": 1e-05,
911
+ "loss": 0.1134,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.10331318962336627,
917
+ "learning_rate": 1e-05,
918
+ "loss": 0.1217,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.08498886624952962,
924
+ "learning_rate": 1e-05,
925
+ "loss": 0.12,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.09918910544874306,
931
+ "learning_rate": 1e-05,
932
+ "loss": 0.1173,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.0751198135696547,
938
+ "learning_rate": 1e-05,
939
+ "loss": 0.0973,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.07959218402066412,
945
+ "learning_rate": 1e-05,
946
+ "loss": 0.0992,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.14419628324779726,
952
+ "learning_rate": 1e-05,
953
+ "loss": 0.0856,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.07894542967774888,
959
+ "learning_rate": 1e-05,
960
+ "loss": 0.1193,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.08735606763938318,
966
+ "learning_rate": 1e-05,
967
+ "loss": 0.1061,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.12344637986728384,
973
+ "learning_rate": 1e-05,
974
+ "loss": 0.1184,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.07797745242316644,
980
+ "learning_rate": 1e-05,
981
+ "loss": 0.0959,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.10065236259356937,
987
+ "learning_rate": 1e-05,
988
+ "loss": 0.0957,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.06472006342138571,
994
+ "learning_rate": 1e-05,
995
+ "loss": 0.0721,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.08080002696086562,
1001
+ "learning_rate": 1e-05,
1002
+ "loss": 0.1073,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.10400160039217118,
1008
+ "learning_rate": 1e-05,
1009
+ "loss": 0.1227,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.08719509476650818,
1015
+ "learning_rate": 1e-05,
1016
+ "loss": 0.114,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.08431635436674337,
1022
+ "learning_rate": 1e-05,
1023
+ "loss": 0.1303,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.23947926607305503,
1029
+ "learning_rate": 1e-05,
1030
+ "loss": 0.1199,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.08794721265212341,
1036
+ "learning_rate": 1e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.08063747277184712,
1043
+ "learning_rate": 1e-05,
1044
+ "loss": 0.1062,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.06832693897193236,
1050
+ "learning_rate": 1e-05,
1051
+ "loss": 0.0842,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.07037053759395089,
1057
+ "learning_rate": 1e-05,
1058
+ "loss": 0.0971,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.08753063334098339,
1064
+ "learning_rate": 1e-05,
1065
+ "loss": 0.085,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.11381804369240754,
1071
+ "learning_rate": 1e-05,
1072
+ "loss": 0.1156,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.07203805377255211,
1078
+ "learning_rate": 1e-05,
1079
+ "loss": 0.0951,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.1156784206459358,
1085
+ "learning_rate": 1e-05,
1086
+ "loss": 0.1557,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.11353874538174968,
1092
+ "learning_rate": 1e-05,
1093
+ "loss": 0.1284,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.06675505890811795,
1099
+ "learning_rate": 1e-05,
1100
+ "loss": 0.089,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.07642955477275162,
1106
+ "learning_rate": 1e-05,
1107
+ "loss": 0.0825,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.07196529265355209,
1113
+ "learning_rate": 1e-05,
1114
+ "loss": 0.0885,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.08651497112727735,
1120
+ "learning_rate": 1e-05,
1121
+ "loss": 0.0934,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.07249320769144564,
1127
+ "learning_rate": 1e-05,
1128
+ "loss": 0.102,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 0.08744246078973236,
1134
+ "learning_rate": 1e-05,
1135
+ "loss": 0.0905,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 0.08657071789403122,
1141
+ "learning_rate": 1e-05,
1142
+ "loss": 0.1217,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 0.1064187506686306,
1148
+ "learning_rate": 1e-05,
1149
+ "loss": 0.1163,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 0.1280290421664948,
1155
+ "learning_rate": 1e-05,
1156
+ "loss": 0.1046,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 0.09937311183437203,
1162
+ "learning_rate": 1e-05,
1163
+ "loss": 0.1147,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 0.08384493963149035,
1169
+ "learning_rate": 1e-05,
1170
+ "loss": 0.0837,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.0878469941667546,
1176
+ "learning_rate": 1e-05,
1177
+ "loss": 0.1034,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.08507656582015763,
1183
+ "learning_rate": 1e-05,
1184
+ "loss": 0.1124,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.14341789007671765,
1190
+ "learning_rate": 1e-05,
1191
+ "loss": 0.1045,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.11549200338103699,
1197
+ "learning_rate": 1e-05,
1198
+ "loss": 0.1192,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 0.08297398102159202,
1204
+ "learning_rate": 1e-05,
1205
+ "loss": 0.106,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.08511454300188333,
1211
+ "learning_rate": 1e-05,
1212
+ "loss": 0.1115,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 0.06731733651614974,
1218
+ "learning_rate": 1e-05,
1219
+ "loss": 0.0579,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.08522628039447024,
1225
+ "learning_rate": 1e-05,
1226
+ "loss": 0.0944,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.08148851689521808,
1232
+ "learning_rate": 1e-05,
1233
+ "loss": 0.0946,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.09314761246496046,
1239
+ "learning_rate": 1e-05,
1240
+ "loss": 0.1077,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.08337943532869242,
1246
+ "learning_rate": 1e-05,
1247
+ "loss": 0.0919,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.07936632915317685,
1253
+ "learning_rate": 1e-05,
1254
+ "loss": 0.0878,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.10041567827499392,
1260
+ "learning_rate": 1e-05,
1261
+ "loss": 0.1164,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.08184099557308296,
1267
+ "learning_rate": 1e-05,
1268
+ "loss": 0.1143,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.5445333333333333,
1273
+ "grad_norm": 0.08722428613554693,
1274
+ "learning_rate": 1e-05,
1275
+ "loss": 0.1068,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5530666666666666,
1280
+ "grad_norm": 0.08710953879234071,
1281
+ "learning_rate": 1e-05,
1282
+ "loss": 0.11,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.5615999999999999,
1287
+ "grad_norm": 0.08115450331732889,
1288
+ "learning_rate": 1e-05,
1289
+ "loss": 0.0877,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5701333333333334,
1294
+ "grad_norm": 0.06955623887568685,
1295
+ "learning_rate": 1e-05,
1296
+ "loss": 0.0758,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5786666666666667,
1301
+ "grad_norm": 0.11077420984396173,
1302
+ "learning_rate": 1e-05,
1303
+ "loss": 0.0886,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5872000000000002,
1308
+ "grad_norm": 0.09248170156976404,
1309
+ "learning_rate": 1e-05,
1310
+ "loss": 0.1042,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5957333333333334,
1315
+ "grad_norm": 0.0875865630501027,
1316
+ "learning_rate": 1e-05,
1317
+ "loss": 0.0956,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.6042666666666667,
1322
+ "grad_norm": 0.09025094284776364,
1323
+ "learning_rate": 1e-05,
1324
+ "loss": 0.0865,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6128,
1329
+ "grad_norm": 0.09201435441623142,
1330
+ "learning_rate": 1e-05,
1331
+ "loss": 0.0848,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.6213333333333333,
1336
+ "grad_norm": 0.08582347653077456,
1337
+ "learning_rate": 1e-05,
1338
+ "loss": 0.0868,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6298666666666666,
1343
+ "grad_norm": 0.08390294885002035,
1344
+ "learning_rate": 1e-05,
1345
+ "loss": 0.0883,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.6383999999999999,
1350
+ "grad_norm": 0.09484831369314428,
1351
+ "learning_rate": 1e-05,
1352
+ "loss": 0.0955,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6469333333333334,
1357
+ "grad_norm": 0.08291745035821121,
1358
+ "learning_rate": 1e-05,
1359
+ "loss": 0.0943,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.6554666666666666,
1364
+ "grad_norm": 0.09788087284042751,
1365
+ "learning_rate": 1e-05,
1366
+ "loss": 0.1146,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6640000000000001,
1371
+ "grad_norm": 0.09763113175653552,
1372
+ "learning_rate": 1e-05,
1373
+ "loss": 0.1028,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6725333333333334,
1378
+ "grad_norm": 0.11617852408102547,
1379
+ "learning_rate": 1e-05,
1380
+ "loss": 0.1323,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6810666666666667,
1385
+ "grad_norm": 0.12191871384850739,
1386
+ "learning_rate": 1e-05,
1387
+ "loss": 0.1395,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6896,
1392
+ "grad_norm": 0.1359943408077879,
1393
+ "learning_rate": 1e-05,
1394
+ "loss": 0.1191,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.6981333333333333,
1399
+ "grad_norm": 0.12006029084078058,
1400
+ "learning_rate": 1e-05,
1401
+ "loss": 0.0983,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7066666666666666,
1406
+ "grad_norm": 0.09668785600159001,
1407
+ "learning_rate": 1e-05,
1408
+ "loss": 0.0801,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.7151999999999998,
1413
+ "grad_norm": 0.11929283034682205,
1414
+ "learning_rate": 1e-05,
1415
+ "loss": 0.1072,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.7237333333333333,
1420
+ "grad_norm": 0.09077598659108727,
1421
+ "learning_rate": 1e-05,
1422
+ "loss": 0.0835,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.7322666666666666,
1427
+ "grad_norm": 0.1315112247694008,
1428
+ "learning_rate": 1e-05,
1429
+ "loss": 0.1251,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.7408000000000001,
1434
+ "grad_norm": 0.10262675849503336,
1435
+ "learning_rate": 1e-05,
1436
+ "loss": 0.1102,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.7493333333333334,
1441
+ "grad_norm": 0.11679561974734426,
1442
+ "learning_rate": 1e-05,
1443
+ "loss": 0.0912,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.7578666666666667,
1448
+ "grad_norm": 0.12857201623167358,
1449
+ "learning_rate": 1e-05,
1450
+ "loss": 0.1108,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.7664,
1455
+ "grad_norm": 0.110417578370301,
1456
+ "learning_rate": 1e-05,
1457
+ "loss": 0.0713,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.7749333333333333,
1462
+ "grad_norm": 0.1206716016388202,
1463
+ "learning_rate": 1e-05,
1464
+ "loss": 0.099,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.7834666666666665,
1469
+ "grad_norm": 0.11690286401098868,
1470
+ "learning_rate": 1e-05,
1471
+ "loss": 0.1398,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.792,
1476
+ "grad_norm": 0.1087083638784744,
1477
+ "learning_rate": 1e-05,
1478
+ "loss": 0.1106,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.8005333333333333,
1483
+ "grad_norm": 0.13044092544075447,
1484
+ "learning_rate": 1e-05,
1485
+ "loss": 0.1298,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.8090666666666668,
1490
+ "grad_norm": 0.11125544216608903,
1491
+ "learning_rate": 1e-05,
1492
+ "loss": 0.0862,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.8176,
1497
+ "grad_norm": 0.15173848052348715,
1498
+ "learning_rate": 1e-05,
1499
+ "loss": 0.1116,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.8261333333333334,
1504
+ "grad_norm": 0.1300854070876123,
1505
+ "learning_rate": 1e-05,
1506
+ "loss": 0.0881,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.8346666666666667,
1511
+ "grad_norm": 0.12472742133557221,
1512
+ "learning_rate": 1e-05,
1513
+ "loss": 0.1199,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.8432,
1518
+ "grad_norm": 0.10311157164421082,
1519
+ "learning_rate": 1e-05,
1520
+ "loss": 0.0887,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.8517333333333332,
1525
+ "grad_norm": 0.13979969636076792,
1526
+ "learning_rate": 1e-05,
1527
+ "loss": 0.089,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.8602666666666665,
1532
+ "grad_norm": 0.1725935114282675,
1533
+ "learning_rate": 1e-05,
1534
+ "loss": 0.1232,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.8688,
1539
+ "grad_norm": 0.13035682714460442,
1540
+ "learning_rate": 1e-05,
1541
+ "loss": 0.0803,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.8773333333333333,
1546
+ "grad_norm": 0.11707794313507026,
1547
+ "learning_rate": 1e-05,
1548
+ "loss": 0.0947,
1549
+ "step": 220
1550
+ }
1551
+ ],
1552
+ "logging_steps": 1,
1553
+ "max_steps": 301,
1554
+ "num_input_tokens_seen": 0,
1555
+ "num_train_epochs": 3,
1556
+ "save_steps": 20,
1557
+ "stateful_callbacks": {
1558
+ "TrainerControl": {
1559
+ "args": {
1560
+ "should_epoch_stop": false,
1561
+ "should_evaluate": false,
1562
+ "should_log": false,
1563
+ "should_save": true,
1564
+ "should_training_stop": false
1565
+ },
1566
+ "attributes": {}
1567
+ }
1568
+ },
1569
+ "total_flos": 3.1374063827523994e+18,
1570
+ "train_batch_size": 16,
1571
+ "trial_name": null,
1572
+ "trial_params": null
1573
+ }
checkpoint-220/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9430fb289d52200b279530dc31f818fe016b81f2a2feb4d356e75541590998de
3
+ size 6840
checkpoint-240/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-240/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-240/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aac588465402888ebbdf86cf738925beff4117d2f5bd01e44b0bba300250fbd
3
+ size 1138856856
checkpoint-240/trainer_state.json ADDED
@@ -0,0 +1,1713 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.048,
5
+ "eval_steps": 500,
6
+ "global_step": 240,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 160.11701043689894,
14
+ "learning_rate": 0.0,
15
+ "loss": 32.4968,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 157.24779534424323,
21
+ "learning_rate": 1.5051499783199057e-06,
22
+ "loss": 31.6979,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 157.9465272449825,
28
+ "learning_rate": 2.385606273598312e-06,
29
+ "loss": 31.8828,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 160.2154859965946,
35
+ "learning_rate": 3.0102999566398115e-06,
36
+ "loss": 31.9681,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 158.5305446712084,
42
+ "learning_rate": 3.4948500216800934e-06,
43
+ "loss": 31.3717,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 155.50243039700376,
49
+ "learning_rate": 3.890756251918218e-06,
50
+ "loss": 30.5348,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 168.6887446693614,
56
+ "learning_rate": 4.225490200071284e-06,
57
+ "loss": 31.3845,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 164.2631689450651,
63
+ "learning_rate": 4.515449934959717e-06,
64
+ "loss": 30.5243,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 174.1878139573776,
70
+ "learning_rate": 4.771212547196624e-06,
71
+ "loss": 30.0138,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 177.9519334680014,
77
+ "learning_rate": 4.9999999999999996e-06,
78
+ "loss": 29.6143,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 183.57104380865735,
84
+ "learning_rate": 5.206963425791125e-06,
85
+ "loss": 28.8718,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 186.4090344511231,
91
+ "learning_rate": 5.395906230238124e-06,
92
+ "loss": 26.1695,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 198.17161320746723,
98
+ "learning_rate": 5.5697167615341825e-06,
99
+ "loss": 26.1266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 182.4443087115901,
105
+ "learning_rate": 5.730640178391189e-06,
106
+ "loss": 24.2121,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 159.38105380659272,
112
+ "learning_rate": 5.880456295278406e-06,
113
+ "loss": 22.5796,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 142.82387126501297,
119
+ "learning_rate": 6.020599913279623e-06,
120
+ "loss": 21.1346,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 123.86394296641578,
126
+ "learning_rate": 6.15224460689137e-06,
127
+ "loss": 19.8457,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 112.3988260336824,
133
+ "learning_rate": 6.276362525516529e-06,
134
+ "loss": 18.7824,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 120.96712330991012,
140
+ "learning_rate": 6.393768004764144e-06,
141
+ "loss": 18.0207,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 129.42692949353702,
147
+ "learning_rate": 6.505149978319905e-06,
148
+ "loss": 16.8355,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 120.65595457746791,
154
+ "learning_rate": 6.611096473669596e-06,
155
+ "loss": 15.252,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 133.05280466087515,
161
+ "learning_rate": 6.712113404111031e-06,
162
+ "loss": 14.1391,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 127.95029628849048,
168
+ "learning_rate": 6.808639180087963e-06,
169
+ "loss": 12.9566,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 108.83495245094748,
175
+ "learning_rate": 6.90105620855803e-06,
176
+ "loss": 11.8743,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 99.90727146021455,
182
+ "learning_rate": 6.989700043360187e-06,
183
+ "loss": 10.962,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 98.37126740059823,
189
+ "learning_rate": 7.074866739854089e-06,
190
+ "loss": 9.9919,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 92.26708429201608,
196
+ "learning_rate": 7.156818820794936e-06,
197
+ "loss": 8.8811,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 83.36099898839835,
203
+ "learning_rate": 7.235790156711096e-06,
204
+ "loss": 7.7806,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 68.07500315598597,
210
+ "learning_rate": 7.3119899894947795e-06,
211
+ "loss": 7.0528,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 69.58960332280246,
217
+ "learning_rate": 7.385606273598311e-06,
218
+ "loss": 6.3683,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 68.77532204123075,
224
+ "learning_rate": 7.456808469171363e-06,
225
+ "loss": 6.1635,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 66.29676636510072,
231
+ "learning_rate": 7.5257498915995295e-06,
232
+ "loss": 4.711,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 42.87145091679237,
238
+ "learning_rate": 7.592569699389437e-06,
239
+ "loss": 4.5119,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 26.2592350291551,
245
+ "learning_rate": 7.657394585211274e-06,
246
+ "loss": 4.31,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 15.35959008067237,
252
+ "learning_rate": 7.720340221751376e-06,
253
+ "loss": 4.0001,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.50847651865227,
259
+ "learning_rate": 7.781512503836437e-06,
260
+ "loss": 3.5723,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 6.562581089063746,
266
+ "learning_rate": 7.841008620334974e-06,
267
+ "loss": 3.9254,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 5.6145595722250095,
273
+ "learning_rate": 7.89891798308405e-06,
274
+ "loss": 3.8746,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 5.385367220486204,
280
+ "learning_rate": 7.955323035132495e-06,
281
+ "loss": 3.8128,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 5.403447124703616,
287
+ "learning_rate": 8.010299956639811e-06,
288
+ "loss": 3.885,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 5.48242204895128,
294
+ "learning_rate": 8.063919283598677e-06,
295
+ "loss": 3.8048,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 5.5525098950513865,
301
+ "learning_rate": 8.116246451989503e-06,
302
+ "loss": 3.7508,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 5.354384520535484,
308
+ "learning_rate": 8.167342277897933e-06,
309
+ "loss": 3.5069,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 5.46272338131107,
315
+ "learning_rate": 8.217263382430936e-06,
316
+ "loss": 3.6747,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 4.798550688968453,
322
+ "learning_rate": 8.266062568876717e-06,
323
+ "loss": 3.1609,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 5.755104452953421,
329
+ "learning_rate": 8.31378915840787e-06,
330
+ "loss": 3.5733,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 4.618763611067563,
336
+ "learning_rate": 8.360489289678585e-06,
337
+ "loss": 2.9402,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 5.506785974818791,
343
+ "learning_rate": 8.406206186877936e-06,
344
+ "loss": 3.382,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 4.68603207809794,
350
+ "learning_rate": 8.450980400142568e-06,
351
+ "loss": 2.9918,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 5.124033394817131,
357
+ "learning_rate": 8.494850021680093e-06,
358
+ "loss": 3.3202,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 4.293001183481895,
364
+ "learning_rate": 8.537850880489681e-06,
365
+ "loss": 2.8519,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 4.382596858902394,
371
+ "learning_rate": 8.580016718173996e-06,
372
+ "loss": 2.9683,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 4.3176263388044696,
378
+ "learning_rate": 8.621379348003945e-06,
379
+ "loss": 2.9257,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 4.5250022171605195,
385
+ "learning_rate": 8.661968799114844e-06,
386
+ "loss": 3.0556,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 4.429424190600661,
392
+ "learning_rate": 8.701813447471218e-06,
393
+ "loss": 2.9513,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 4.349652568052827,
399
+ "learning_rate": 8.740940135031001e-06,
400
+ "loss": 2.9029,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 4.299227871435445,
406
+ "learning_rate": 8.779374278362457e-06,
407
+ "loss": 2.5989,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 4.562461330302201,
413
+ "learning_rate": 8.817139967814684e-06,
414
+ "loss": 2.8158,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 4.606987182758338,
420
+ "learning_rate": 8.854260058210721e-06,
421
+ "loss": 2.6272,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 4.9420031522511545,
427
+ "learning_rate": 8.890756251918216e-06,
428
+ "loss": 2.5488,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 4.706462297046012,
434
+ "learning_rate": 8.926649175053834e-06,
435
+ "loss": 2.3575,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 4.862820204363494,
441
+ "learning_rate": 8.961958447491269e-06,
442
+ "loss": 2.2952,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 4.911045913397774,
448
+ "learning_rate": 8.996702747267908e-06,
449
+ "loss": 2.1768,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 5.46978680182973,
455
+ "learning_rate": 9.030899869919434e-06,
456
+ "loss": 2.2528,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 5.847558397227374,
462
+ "learning_rate": 9.064566783214276e-06,
463
+ "loss": 2.2401,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 5.984440656257,
469
+ "learning_rate": 9.097719677709343e-06,
470
+ "loss": 2.156,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 6.146172189799918,
476
+ "learning_rate": 9.130374013504131e-06,
477
+ "loss": 2.0059,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 5.725706778130614,
483
+ "learning_rate": 9.162544563531182e-06,
484
+ "loss": 1.7756,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 6.479060263133115,
490
+ "learning_rate": 9.194245453686277e-06,
491
+ "loss": 1.7651,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 7.319291050667066,
497
+ "learning_rate": 9.225490200071284e-06,
498
+ "loss": 1.7712,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 6.913275412032087,
504
+ "learning_rate": 9.256291743595376e-06,
505
+ "loss": 1.709,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 6.600657239614328,
511
+ "learning_rate": 9.28666248215634e-06,
512
+ "loss": 1.3731,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 7.301483724647945,
518
+ "learning_rate": 9.316614300602277e-06,
519
+ "loss": 1.4166,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 7.154933225265475,
525
+ "learning_rate": 9.346158598654881e-06,
526
+ "loss": 1.2797,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 8.248472592538771,
532
+ "learning_rate": 9.375306316958499e-06,
533
+ "loss": 1.2082,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 7.444479096112177,
539
+ "learning_rate": 9.404067961403957e-06,
540
+ "loss": 1.0402,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 6.819760434594012,
546
+ "learning_rate": 9.432453625862409e-06,
547
+ "loss": 0.8244,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 6.894760862855001,
553
+ "learning_rate": 9.460473013452401e-06,
554
+ "loss": 0.8345,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 6.001848571839919,
560
+ "learning_rate": 9.488135456452207e-06,
561
+ "loss": 0.6839,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 5.709147411501981,
567
+ "learning_rate": 9.515449934959717e-06,
568
+ "loss": 0.6567,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 4.128977158730638,
574
+ "learning_rate": 9.542425094393249e-06,
575
+ "loss": 0.545,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 2.604915806147427,
581
+ "learning_rate": 9.569069261918582e-06,
582
+ "loss": 0.4596,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 2.039939253407506,
588
+ "learning_rate": 9.59539046188037e-06,
589
+ "loss": 0.452,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 2.0398988141415337,
595
+ "learning_rate": 9.621396430309407e-06,
596
+ "loss": 0.4538,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 2.37589477950211,
602
+ "learning_rate": 9.647094628571464e-06,
603
+ "loss": 0.4505,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 2.80580920047501,
609
+ "learning_rate": 9.672492256217837e-06,
610
+ "loss": 0.5284,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 2.3687428819051197,
616
+ "learning_rate": 9.697596263093091e-06,
617
+ "loss": 0.4371,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 1.6362502854757155,
623
+ "learning_rate": 9.722413360750844e-06,
624
+ "loss": 0.3652,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 1.5360860168740427,
630
+ "learning_rate": 9.746950033224562e-06,
631
+ "loss": 0.3235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 1.7245475092642693,
637
+ "learning_rate": 9.771212547196623e-06,
638
+ "loss": 0.3072,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 1.4493496982196852,
644
+ "learning_rate": 9.795206961605467e-06,
645
+ "loss": 0.2474,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 1.1662262130552072,
651
+ "learning_rate": 9.818939136727777e-06,
652
+ "loss": 0.2684,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 1.1727132215390659,
658
+ "learning_rate": 9.842414742769675e-06,
659
+ "loss": 0.3456,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.8435059300379855,
665
+ "learning_rate": 9.865639267998493e-06,
666
+ "loss": 0.227,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.8593375804730568,
672
+ "learning_rate": 9.888618026444238e-06,
673
+ "loss": 0.1985,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 1.0673772841412472,
679
+ "learning_rate": 9.911356165197841e-06,
680
+ "loss": 0.3195,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.9341285801648793,
686
+ "learning_rate": 9.933858671331224e-06,
687
+ "loss": 0.213,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.7197728549764331,
693
+ "learning_rate": 9.956130378462474e-06,
694
+ "loss": 0.2067,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.5655901060353195,
700
+ "learning_rate": 9.978175972987748e-06,
701
+ "loss": 0.1708,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.4681745812066334,
707
+ "learning_rate": 9.999999999999999e-06,
708
+ "loss": 0.1983,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.4488180280567293,
714
+ "learning_rate": 1e-05,
715
+ "loss": 0.1401,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.43194512376224187,
721
+ "learning_rate": 1e-05,
722
+ "loss": 0.1097,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.3754480982834532,
728
+ "learning_rate": 1e-05,
729
+ "loss": 0.1531,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.34151633602448267,
735
+ "learning_rate": 1e-05,
736
+ "loss": 0.1685,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.26356638458244175,
742
+ "learning_rate": 1e-05,
743
+ "loss": 0.1104,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.27641004897246113,
749
+ "learning_rate": 1e-05,
750
+ "loss": 0.1589,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.1639383504796773,
756
+ "learning_rate": 1e-05,
757
+ "loss": 0.1064,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.24233145434818837,
763
+ "learning_rate": 1e-05,
764
+ "loss": 0.1385,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.16015184210317215,
770
+ "learning_rate": 1e-05,
771
+ "loss": 0.121,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.14931644417242712,
777
+ "learning_rate": 1e-05,
778
+ "loss": 0.1117,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.15078311335939154,
784
+ "learning_rate": 1e-05,
785
+ "loss": 0.1034,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.16714082761639734,
791
+ "learning_rate": 1e-05,
792
+ "loss": 0.115,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.12479711996187942,
798
+ "learning_rate": 1e-05,
799
+ "loss": 0.1029,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.14783351137940065,
805
+ "learning_rate": 1e-05,
806
+ "loss": 0.0987,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.11311876630863582,
812
+ "learning_rate": 1e-05,
813
+ "loss": 0.0911,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.1238329581090649,
819
+ "learning_rate": 1e-05,
820
+ "loss": 0.1095,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.11117413394533605,
826
+ "learning_rate": 1e-05,
827
+ "loss": 0.0968,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.09247708923706752,
833
+ "learning_rate": 1e-05,
834
+ "loss": 0.0985,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.12028574166046906,
840
+ "learning_rate": 1e-05,
841
+ "loss": 0.1085,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.075460717991084,
847
+ "learning_rate": 1e-05,
848
+ "loss": 0.1007,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.1930335796969662,
854
+ "learning_rate": 1e-05,
855
+ "loss": 0.1438,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.11451251015868702,
861
+ "learning_rate": 1e-05,
862
+ "loss": 0.1365,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.09360332240252384,
868
+ "learning_rate": 1e-05,
869
+ "loss": 0.1039,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.13162505626586696,
875
+ "learning_rate": 1e-05,
876
+ "loss": 0.1132,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.1329223725298499,
882
+ "learning_rate": 1e-05,
883
+ "loss": 0.1153,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.09522360247894453,
889
+ "learning_rate": 1e-05,
890
+ "loss": 0.1264,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.12467359977458509,
896
+ "learning_rate": 1e-05,
897
+ "loss": 0.0866,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.08853379791954709,
903
+ "learning_rate": 1e-05,
904
+ "loss": 0.107,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.16050358070185106,
910
+ "learning_rate": 1e-05,
911
+ "loss": 0.1134,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.10331318962336627,
917
+ "learning_rate": 1e-05,
918
+ "loss": 0.1217,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.08498886624952962,
924
+ "learning_rate": 1e-05,
925
+ "loss": 0.12,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.09918910544874306,
931
+ "learning_rate": 1e-05,
932
+ "loss": 0.1173,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.0751198135696547,
938
+ "learning_rate": 1e-05,
939
+ "loss": 0.0973,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.07959218402066412,
945
+ "learning_rate": 1e-05,
946
+ "loss": 0.0992,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.14419628324779726,
952
+ "learning_rate": 1e-05,
953
+ "loss": 0.0856,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.07894542967774888,
959
+ "learning_rate": 1e-05,
960
+ "loss": 0.1193,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.08735606763938318,
966
+ "learning_rate": 1e-05,
967
+ "loss": 0.1061,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.12344637986728384,
973
+ "learning_rate": 1e-05,
974
+ "loss": 0.1184,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.07797745242316644,
980
+ "learning_rate": 1e-05,
981
+ "loss": 0.0959,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.10065236259356937,
987
+ "learning_rate": 1e-05,
988
+ "loss": 0.0957,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.06472006342138571,
994
+ "learning_rate": 1e-05,
995
+ "loss": 0.0721,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.08080002696086562,
1001
+ "learning_rate": 1e-05,
1002
+ "loss": 0.1073,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.10400160039217118,
1008
+ "learning_rate": 1e-05,
1009
+ "loss": 0.1227,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.08719509476650818,
1015
+ "learning_rate": 1e-05,
1016
+ "loss": 0.114,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.08431635436674337,
1022
+ "learning_rate": 1e-05,
1023
+ "loss": 0.1303,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.23947926607305503,
1029
+ "learning_rate": 1e-05,
1030
+ "loss": 0.1199,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.08794721265212341,
1036
+ "learning_rate": 1e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.08063747277184712,
1043
+ "learning_rate": 1e-05,
1044
+ "loss": 0.1062,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.06832693897193236,
1050
+ "learning_rate": 1e-05,
1051
+ "loss": 0.0842,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.07037053759395089,
1057
+ "learning_rate": 1e-05,
1058
+ "loss": 0.0971,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.08753063334098339,
1064
+ "learning_rate": 1e-05,
1065
+ "loss": 0.085,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.11381804369240754,
1071
+ "learning_rate": 1e-05,
1072
+ "loss": 0.1156,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.07203805377255211,
1078
+ "learning_rate": 1e-05,
1079
+ "loss": 0.0951,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.1156784206459358,
1085
+ "learning_rate": 1e-05,
1086
+ "loss": 0.1557,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.11353874538174968,
1092
+ "learning_rate": 1e-05,
1093
+ "loss": 0.1284,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.06675505890811795,
1099
+ "learning_rate": 1e-05,
1100
+ "loss": 0.089,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.07642955477275162,
1106
+ "learning_rate": 1e-05,
1107
+ "loss": 0.0825,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.07196529265355209,
1113
+ "learning_rate": 1e-05,
1114
+ "loss": 0.0885,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.08651497112727735,
1120
+ "learning_rate": 1e-05,
1121
+ "loss": 0.0934,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.07249320769144564,
1127
+ "learning_rate": 1e-05,
1128
+ "loss": 0.102,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 0.08744246078973236,
1134
+ "learning_rate": 1e-05,
1135
+ "loss": 0.0905,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 0.08657071789403122,
1141
+ "learning_rate": 1e-05,
1142
+ "loss": 0.1217,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 0.1064187506686306,
1148
+ "learning_rate": 1e-05,
1149
+ "loss": 0.1163,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 0.1280290421664948,
1155
+ "learning_rate": 1e-05,
1156
+ "loss": 0.1046,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 0.09937311183437203,
1162
+ "learning_rate": 1e-05,
1163
+ "loss": 0.1147,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 0.08384493963149035,
1169
+ "learning_rate": 1e-05,
1170
+ "loss": 0.0837,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.0878469941667546,
1176
+ "learning_rate": 1e-05,
1177
+ "loss": 0.1034,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.08507656582015763,
1183
+ "learning_rate": 1e-05,
1184
+ "loss": 0.1124,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.14341789007671765,
1190
+ "learning_rate": 1e-05,
1191
+ "loss": 0.1045,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.11549200338103699,
1197
+ "learning_rate": 1e-05,
1198
+ "loss": 0.1192,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 0.08297398102159202,
1204
+ "learning_rate": 1e-05,
1205
+ "loss": 0.106,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.08511454300188333,
1211
+ "learning_rate": 1e-05,
1212
+ "loss": 0.1115,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 0.06731733651614974,
1218
+ "learning_rate": 1e-05,
1219
+ "loss": 0.0579,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.08522628039447024,
1225
+ "learning_rate": 1e-05,
1226
+ "loss": 0.0944,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.08148851689521808,
1232
+ "learning_rate": 1e-05,
1233
+ "loss": 0.0946,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.09314761246496046,
1239
+ "learning_rate": 1e-05,
1240
+ "loss": 0.1077,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.08337943532869242,
1246
+ "learning_rate": 1e-05,
1247
+ "loss": 0.0919,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.07936632915317685,
1253
+ "learning_rate": 1e-05,
1254
+ "loss": 0.0878,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.10041567827499392,
1260
+ "learning_rate": 1e-05,
1261
+ "loss": 0.1164,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.08184099557308296,
1267
+ "learning_rate": 1e-05,
1268
+ "loss": 0.1143,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.5445333333333333,
1273
+ "grad_norm": 0.08722428613554693,
1274
+ "learning_rate": 1e-05,
1275
+ "loss": 0.1068,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5530666666666666,
1280
+ "grad_norm": 0.08710953879234071,
1281
+ "learning_rate": 1e-05,
1282
+ "loss": 0.11,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.5615999999999999,
1287
+ "grad_norm": 0.08115450331732889,
1288
+ "learning_rate": 1e-05,
1289
+ "loss": 0.0877,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5701333333333334,
1294
+ "grad_norm": 0.06955623887568685,
1295
+ "learning_rate": 1e-05,
1296
+ "loss": 0.0758,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5786666666666667,
1301
+ "grad_norm": 0.11077420984396173,
1302
+ "learning_rate": 1e-05,
1303
+ "loss": 0.0886,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5872000000000002,
1308
+ "grad_norm": 0.09248170156976404,
1309
+ "learning_rate": 1e-05,
1310
+ "loss": 0.1042,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5957333333333334,
1315
+ "grad_norm": 0.0875865630501027,
1316
+ "learning_rate": 1e-05,
1317
+ "loss": 0.0956,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.6042666666666667,
1322
+ "grad_norm": 0.09025094284776364,
1323
+ "learning_rate": 1e-05,
1324
+ "loss": 0.0865,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6128,
1329
+ "grad_norm": 0.09201435441623142,
1330
+ "learning_rate": 1e-05,
1331
+ "loss": 0.0848,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.6213333333333333,
1336
+ "grad_norm": 0.08582347653077456,
1337
+ "learning_rate": 1e-05,
1338
+ "loss": 0.0868,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6298666666666666,
1343
+ "grad_norm": 0.08390294885002035,
1344
+ "learning_rate": 1e-05,
1345
+ "loss": 0.0883,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.6383999999999999,
1350
+ "grad_norm": 0.09484831369314428,
1351
+ "learning_rate": 1e-05,
1352
+ "loss": 0.0955,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6469333333333334,
1357
+ "grad_norm": 0.08291745035821121,
1358
+ "learning_rate": 1e-05,
1359
+ "loss": 0.0943,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.6554666666666666,
1364
+ "grad_norm": 0.09788087284042751,
1365
+ "learning_rate": 1e-05,
1366
+ "loss": 0.1146,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6640000000000001,
1371
+ "grad_norm": 0.09763113175653552,
1372
+ "learning_rate": 1e-05,
1373
+ "loss": 0.1028,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6725333333333334,
1378
+ "grad_norm": 0.11617852408102547,
1379
+ "learning_rate": 1e-05,
1380
+ "loss": 0.1323,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6810666666666667,
1385
+ "grad_norm": 0.12191871384850739,
1386
+ "learning_rate": 1e-05,
1387
+ "loss": 0.1395,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6896,
1392
+ "grad_norm": 0.1359943408077879,
1393
+ "learning_rate": 1e-05,
1394
+ "loss": 0.1191,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.6981333333333333,
1399
+ "grad_norm": 0.12006029084078058,
1400
+ "learning_rate": 1e-05,
1401
+ "loss": 0.0983,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7066666666666666,
1406
+ "grad_norm": 0.09668785600159001,
1407
+ "learning_rate": 1e-05,
1408
+ "loss": 0.0801,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.7151999999999998,
1413
+ "grad_norm": 0.11929283034682205,
1414
+ "learning_rate": 1e-05,
1415
+ "loss": 0.1072,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.7237333333333333,
1420
+ "grad_norm": 0.09077598659108727,
1421
+ "learning_rate": 1e-05,
1422
+ "loss": 0.0835,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.7322666666666666,
1427
+ "grad_norm": 0.1315112247694008,
1428
+ "learning_rate": 1e-05,
1429
+ "loss": 0.1251,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.7408000000000001,
1434
+ "grad_norm": 0.10262675849503336,
1435
+ "learning_rate": 1e-05,
1436
+ "loss": 0.1102,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.7493333333333334,
1441
+ "grad_norm": 0.11679561974734426,
1442
+ "learning_rate": 1e-05,
1443
+ "loss": 0.0912,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.7578666666666667,
1448
+ "grad_norm": 0.12857201623167358,
1449
+ "learning_rate": 1e-05,
1450
+ "loss": 0.1108,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.7664,
1455
+ "grad_norm": 0.110417578370301,
1456
+ "learning_rate": 1e-05,
1457
+ "loss": 0.0713,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.7749333333333333,
1462
+ "grad_norm": 0.1206716016388202,
1463
+ "learning_rate": 1e-05,
1464
+ "loss": 0.099,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.7834666666666665,
1469
+ "grad_norm": 0.11690286401098868,
1470
+ "learning_rate": 1e-05,
1471
+ "loss": 0.1398,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.792,
1476
+ "grad_norm": 0.1087083638784744,
1477
+ "learning_rate": 1e-05,
1478
+ "loss": 0.1106,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.8005333333333333,
1483
+ "grad_norm": 0.13044092544075447,
1484
+ "learning_rate": 1e-05,
1485
+ "loss": 0.1298,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.8090666666666668,
1490
+ "grad_norm": 0.11125544216608903,
1491
+ "learning_rate": 1e-05,
1492
+ "loss": 0.0862,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.8176,
1497
+ "grad_norm": 0.15173848052348715,
1498
+ "learning_rate": 1e-05,
1499
+ "loss": 0.1116,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.8261333333333334,
1504
+ "grad_norm": 0.1300854070876123,
1505
+ "learning_rate": 1e-05,
1506
+ "loss": 0.0881,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.8346666666666667,
1511
+ "grad_norm": 0.12472742133557221,
1512
+ "learning_rate": 1e-05,
1513
+ "loss": 0.1199,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.8432,
1518
+ "grad_norm": 0.10311157164421082,
1519
+ "learning_rate": 1e-05,
1520
+ "loss": 0.0887,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.8517333333333332,
1525
+ "grad_norm": 0.13979969636076792,
1526
+ "learning_rate": 1e-05,
1527
+ "loss": 0.089,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.8602666666666665,
1532
+ "grad_norm": 0.1725935114282675,
1533
+ "learning_rate": 1e-05,
1534
+ "loss": 0.1232,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.8688,
1539
+ "grad_norm": 0.13035682714460442,
1540
+ "learning_rate": 1e-05,
1541
+ "loss": 0.0803,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.8773333333333333,
1546
+ "grad_norm": 0.11707794313507026,
1547
+ "learning_rate": 1e-05,
1548
+ "loss": 0.0947,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.8858666666666668,
1553
+ "grad_norm": 0.13425868511610053,
1554
+ "learning_rate": 1e-05,
1555
+ "loss": 0.1118,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.8944,
1560
+ "grad_norm": 0.1269119929658306,
1561
+ "learning_rate": 1e-05,
1562
+ "loss": 0.1075,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.9029333333333334,
1567
+ "grad_norm": 0.14370379197651403,
1568
+ "learning_rate": 1e-05,
1569
+ "loss": 0.084,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.9114666666666666,
1574
+ "grad_norm": 0.15625739080115553,
1575
+ "learning_rate": 1e-05,
1576
+ "loss": 0.1268,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.92,
1581
+ "grad_norm": 0.14298714144246835,
1582
+ "learning_rate": 1e-05,
1583
+ "loss": 0.1092,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.9285333333333332,
1588
+ "grad_norm": 0.1246451691187349,
1589
+ "learning_rate": 1e-05,
1590
+ "loss": 0.0907,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.9370666666666667,
1595
+ "grad_norm": 0.11821532122867853,
1596
+ "learning_rate": 1e-05,
1597
+ "loss": 0.0928,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.9456,
1602
+ "grad_norm": 0.13880790163863022,
1603
+ "learning_rate": 1e-05,
1604
+ "loss": 0.0925,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.9541333333333335,
1609
+ "grad_norm": 0.12467839547788233,
1610
+ "learning_rate": 1e-05,
1611
+ "loss": 0.0769,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.9626666666666668,
1616
+ "grad_norm": 0.1416031541406035,
1617
+ "learning_rate": 1e-05,
1618
+ "loss": 0.1079,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.9712,
1623
+ "grad_norm": 0.12730577347260927,
1624
+ "learning_rate": 1e-05,
1625
+ "loss": 0.0953,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.9797333333333333,
1630
+ "grad_norm": 0.15488312205299337,
1631
+ "learning_rate": 1e-05,
1632
+ "loss": 0.0938,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.9882666666666666,
1637
+ "grad_norm": 0.1285822292835917,
1638
+ "learning_rate": 1e-05,
1639
+ "loss": 0.0749,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 1.9968,
1644
+ "grad_norm": 0.15841174792939966,
1645
+ "learning_rate": 1e-05,
1646
+ "loss": 0.0814,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 2.005333333333333,
1651
+ "grad_norm": 0.1587140991418047,
1652
+ "learning_rate": 1e-05,
1653
+ "loss": 0.1167,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 2.0138666666666665,
1658
+ "grad_norm": 0.18909490284011177,
1659
+ "learning_rate": 1e-05,
1660
+ "loss": 0.1615,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 2.0224,
1665
+ "grad_norm": 0.17253418789231068,
1666
+ "learning_rate": 1e-05,
1667
+ "loss": 0.1135,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 2.0309333333333335,
1672
+ "grad_norm": 0.19155873822350467,
1673
+ "learning_rate": 1e-05,
1674
+ "loss": 0.1076,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 2.0394666666666668,
1679
+ "grad_norm": 0.1825343775540858,
1680
+ "learning_rate": 1e-05,
1681
+ "loss": 0.1219,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 2.048,
1686
+ "grad_norm": 0.245406872522052,
1687
+ "learning_rate": 1e-05,
1688
+ "loss": 0.1044,
1689
+ "step": 240
1690
+ }
1691
+ ],
1692
+ "logging_steps": 1,
1693
+ "max_steps": 301,
1694
+ "num_input_tokens_seen": 0,
1695
+ "num_train_epochs": 3,
1696
+ "save_steps": 20,
1697
+ "stateful_callbacks": {
1698
+ "TrainerControl": {
1699
+ "args": {
1700
+ "should_epoch_stop": false,
1701
+ "should_evaluate": false,
1702
+ "should_log": false,
1703
+ "should_save": true,
1704
+ "should_training_stop": false
1705
+ },
1706
+ "attributes": {}
1707
+ }
1708
+ },
1709
+ "total_flos": 3.4262663119891333e+18,
1710
+ "train_batch_size": 16,
1711
+ "trial_name": null,
1712
+ "trial_params": null
1713
+ }
checkpoint-240/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9430fb289d52200b279530dc31f818fe016b81f2a2feb4d356e75541590998de
3
+ size 6840
checkpoint-260/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-260/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "lm_head",
30
+ "o_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }