--- library_name: transformers license: other base_model: nvidia/segformer-b2-finetuned-cityscapes-1024-1024 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: SegFormer_b2 results: [] --- # SegFormer_b2 This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b2-finetuned-cityscapes-1024-1024) on the Cityscapes dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2516 - eval_mean_iou: 0.3875 - eval_mean_accuracy: 0.5066 - eval_overall_accuracy: 0.9043 - eval_accuracy_unlabeled: nan - eval_accuracy_ego vehicle: nan - eval_accuracy_rectification border: nan - eval_accuracy_out of roi: nan - eval_accuracy_static: nan - eval_accuracy_dynamic: nan - eval_accuracy_ground: nan - eval_accuracy_road: 0.9832 - eval_accuracy_sidewalk: 0.8421 - eval_accuracy_parking: nan - eval_accuracy_rail track: nan - eval_accuracy_building: 0.9158 - eval_accuracy_wall: 0.0 - eval_accuracy_fence: 0.0 - eval_accuracy_guard rail: nan - eval_accuracy_bridge: nan - eval_accuracy_tunnel: nan - eval_accuracy_pole: 0.5362 - eval_accuracy_polegroup: nan - eval_accuracy_traffic light: 0.5814 - eval_accuracy_traffic sign: 0.7376 - eval_accuracy_vegetation: 0.9188 - eval_accuracy_terrain: 0.6737 - eval_accuracy_sky: 0.9746 - eval_accuracy_person: 0.7788 - eval_accuracy_rider: 0.0 - eval_accuracy_car: 0.9354 - eval_accuracy_truck: 0.0 - eval_accuracy_bus: 0.0 - eval_accuracy_caravan: nan - eval_accuracy_trailer: nan - eval_accuracy_train: 0.0 - eval_accuracy_motorcycle: 0.0 - eval_accuracy_bicycle: 0.7472 - eval_accuracy_license plate: nan - eval_iou_unlabeled: nan - eval_iou_ego vehicle: nan - eval_iou_rectification border: nan - eval_iou_out of roi: nan - eval_iou_static: 0.0 - eval_iou_dynamic: nan - eval_iou_ground: nan - eval_iou_road: 0.9649 - eval_iou_sidewalk: 0.7403 - eval_iou_parking: nan - eval_iou_rail track: nan - eval_iou_building: 0.8430 - eval_iou_wall: 0.0 - eval_iou_fence: 0.0 - eval_iou_guard rail: nan - eval_iou_bridge: nan - eval_iou_tunnel: nan - eval_iou_pole: 0.3619 - eval_iou_polegroup: nan - eval_iou_traffic light: 0.4506 - eval_iou_traffic sign: 0.5317 - eval_iou_vegetation: 0.8647 - eval_iou_terrain: 0.4610 - eval_iou_sky: 0.8806 - eval_iou_person: 0.5967 - eval_iou_rider: 0.0 - eval_iou_car: 0.8756 - eval_iou_truck: 0.0 - eval_iou_bus: 0.0 - eval_iou_caravan: nan - eval_iou_trailer: nan - eval_iou_train: 0.0 - eval_iou_motorcycle: 0.0 - eval_iou_bicycle: 0.5665 - eval_iou_license plate: 0.0 - eval_runtime: 185.4692 - eval_samples_per_second: 2.696 - eval_steps_per_second: 0.674 - epoch: 20.4301 - step: 3800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0